论文标题

在形成异质网络的复合域中狭窄的逃逸

Narrow escape in composite domains forming heterogeneous networks

论文作者

Paquin-Lefebvre, Frédéric, Basnayake, Kanishka, Holcman, David

论文摘要

蜂窝网络通常由连接大量较大节点室的细小管组成。这些结构用于蛋白质的主动或扩散转运。例子是大脑中的神经胶质网络,位于树突上的细胞或树突棘中的内质网。在后一种情况下,形成头部的大球由狭窄的通道连接。在所有情况下,如何调节分子,离子或蛋白质的转运都决定化学反应或信号转导的时间尺度。在本研究中,基于在三个维度的建模扩散,我们计算了布朗粒子在与球形节点连接的小管组成的复合网络内达到狭窄目标的平均时间。我们通过用小dirichlet部分求解混合的neumann-dirichlet边界价值问题来得出渐近公式。我们首先考虑以二维晶格结构组织的网络域的情况,该结构由通过狭窄的圆柱通道连接的球形球室组成。当有一个目标时,我们将在每个球形隔室上平均每个平均第一个通道时间(MFPT)得出一个矩阵方程。然后,我们考虑通过狭窄的圆柱颈部连接到大圆柱的球形头状结构域组成的复合域。对于从狭窄颈部开始的布朗颗粒,我们得出了MFPT的公式,以达到球形头上的目标。当扩散颗粒碰到大圆柱体的其他吸收边界时,可以吸收扩散的颗粒时,我们计算到达到目标的概率和条件MFPT。我们将这些公式与混合边界值问题的数值解和布朗模拟进行了比较。总而言之,目前的分析表明,由异质网络扩散驱动的平均到达时间由目标和狭窄的通道大小控制。

Cellular networks are often composed of thin tubules connecting much larger node compartments. These structures serve for active or diffusion transport of proteins. Examples are glial networks in the brain, the endoplasmic reticulum in cells or dendritic spines located on dendrites. In this latter case, a large ball forming the head is connected by a narrow passage. In all cases, how the transport of molecules, ions or proteins is regulated determines the time scale of chemical reactions or signal transduction. In the present study, based on modeling diffusion in three dimensions, we compute the mean time for a Brownian particle to reach a narrow target inside such a composite network made of tubules connected to spherical nodes. We derive asymptotic formulas by solving a mixed Neumann-Dirichlet boundary value problem with small Dirichlet part. We first consider the case of a network domain organized in a 2-D lattice structure that consists of spherical ball compartments connected via narrow cylindrical passages. When there is a single target we derive a matrix equation for each Mean First Passage Time (MFPT) averaged over each spherical compartment. We then consider a composite domain consisting of a spherical head-like domain connected to a large cylinder via a narrow cylindrical neck. For Brownian particles starting within the narrow neck, we derive formulas for the MFPT to reach a target on the spherical head. When diffusing particles can be absorbed upon hitting additional absorbing boundaries of the large cylinder, we compute the probability and conditional MFPT to reach a target. We compare these formulas with numerical solutions of the mixed boundary value problem and with Brownian simulations. To conclude, the present analysis reveals that the mean arrival time, driven by diffusion in heterogeneous networks, is controlled by the target and narrow passage sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源