论文标题

分割能力图:解释医疗图像分割的深度特征

Segmentation Ability Map: Interpret deep features for medical image segmentation

论文作者

He, Sheng, Feng, Yanfang, Grant, P. Ellen, Ou, Yangming

论文摘要

深度卷积神经网络(CNN)已被广泛用于医学图像分割。在大多数研究中,仅利用输出层来计算最终的分割结果,并且深知特征的隐藏表示尚未得到充分了解。在本文中,我们提出了一种原型分割(Putoseg)方法,以根据深度特征计算二进制分割图。我们通过计算特征分割映射和地面真相之间的骰子来衡量特征的分割能力,该骰子称为分割能力得分(简称SA得分)。相应的SA分数可以量化不同层和单元中深度特征的分割能力,以了解深层神经网络以进行分割。此外,我们的方法可以提供平均SA分数,该分数可以在没有地面真相的情况下对测试图像上的输出进行性能估算。最后,我们使用拟议的Putoseg方法直接在输入图像上计算分割图,以进一步了解每个输入图像的分割能力。结果呈现在脑MRI中的分割肿瘤,皮肤图像的病变,CT图像中的相关异常,腹部MRI中的前列腺分割以及CT图像中的胰腺质量分割。我们的方法可以为解释和解释的AI系统提供新的见解,以进行医学图像分割。 我们的代码可在:\ url {https://github.com/shengfly/protoseg}上。

Deep convolutional neural networks (CNNs) have been widely used for medical image segmentation. In most studies, only the output layer is exploited to compute the final segmentation results and the hidden representations of the deep learned features have not been well understood. In this paper, we propose a prototype segmentation (ProtoSeg) method to compute a binary segmentation map based on deep features. We measure the segmentation abilities of the features by computing the Dice between the feature segmentation map and ground-truth, named as the segmentation ability score (SA score for short). The corresponding SA score can quantify the segmentation abilities of deep features in different layers and units to understand the deep neural networks for segmentation. In addition, our method can provide a mean SA score which can give a performance estimation of the output on the test images without ground-truth. Finally, we use the proposed ProtoSeg method to compute the segmentation map directly on input images to further understand the segmentation ability of each input image. Results are presented on segmenting tumors in brain MRI, lesions in skin images, COVID-related abnormality in CT images, prostate segmentation in abdominal MRI, and pancreatic mass segmentation in CT images. Our method can provide new insights for interpreting and explainable AI systems for medical image segmentation. Our code is available on: \url{https://github.com/shengfly/ProtoSeg}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源