论文标题

通过可逆性分解,造成现实的人脸操纵的倒置外gan倒置

Out-of-domain GAN inversion via Invertibility Decomposition for Photo-Realistic Human Face Manipulation

论文作者

Yang, Xin, Xu, Xiaogang, Chen, Yingcong

论文摘要

图像中的多域(OOD)区域(例如,背景,附件)阻碍了生成对抗网络(GAN)反转的忠诚度。检测超出预训练模型的生成能力并将这些区域与输入图像混合的OOD区域可以增强保真度。 “可逆性掩码”算出了这些OOD区域,现有方法可以通过重建误差预测掩模。但是,由于重建误差(ID)区域的重建误差的影响,估计的面具通常不准确。在本文中,我们提出了一个新颖的框架,通过设计一个新的模块将输入图像分解为具有可逆性掩码的ID和OOD分区,从而增强了人脸反演的忠诚度。与以前的作品不同,我们的可逆检测器同时通过空间比对模块同时学习。我们将生成的特征迭代与输入几何形状对齐,并减少ID区域中的重建误差。因此,OOD区域更可区分,可以精确预测。然后,我们通过将输入图像中的OOD区域与ID GAN反转结果混合来提高结果的保真度。我们的方法可为现实世界的人脸图像反转和操纵产生光真实的结果。广泛的实验证明了我们的方法优于GAN反转和属性操纵质量的现有方法。

The fidelity of Generative Adversarial Networks (GAN) inversion is impeded by Out-Of-Domain (OOD) areas (e.g., background, accessories) in the image. Detecting the OOD areas beyond the generation ability of the pre-trained model and blending these regions with the input image can enhance fidelity. The "invertibility mask" figures out these OOD areas, and existing methods predict the mask with the reconstruction error. However, the estimated mask is usually inaccurate due to the influence of the reconstruction error in the In-Domain (ID) area. In this paper, we propose a novel framework that enhances the fidelity of human face inversion by designing a new module to decompose the input images to ID and OOD partitions with invertibility masks. Unlike previous works, our invertibility detector is simultaneously learned with a spatial alignment module. We iteratively align the generated features to the input geometry and reduce the reconstruction error in the ID regions. Thus, the OOD areas are more distinguishable and can be precisely predicted. Then, we improve the fidelity of our results by blending the OOD areas from the input image with the ID GAN inversion results. Our method produces photo-realistic results for real-world human face image inversion and manipulation. Extensive experiments demonstrate our method's superiority over existing methods in the quality of GAN inversion and attribute manipulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源