论文标题

多符合可控文本生成的可扩展插件方法

An Extensible Plug-and-Play Method for Multi-Aspect Controllable Text Generation

论文作者

Huang, Xuancheng, Liu, Zijun, Li, Peng, Li, Tao, Sun, Maosong, Liu, Yang

论文摘要

最近,多个可控文本生成在多个方面(例如,情感,主题和关键字)控制生成的文本已经引起了越来越多的关注。尽管基于参数有效调整(例如前缀调整)的方法可以以插件的方式实现多相关的控制,但是多个前缀的相互干扰会导致约束的显着退化,并将其扩展性限制在训练时间不见的方面组合中。在这项工作中,我们为干扰提供了理论下限,并在经验上发现干扰随插入前缀的层数而生长。基于这些分析,我们建议使用可训练的门来归一化前缀的干预以限制日益增长的干扰。结果,可以通过简单地串联相应的插件来实现控制训练时间的看不见的组合,从而可以以较低的成本扩展新约束。此外,我们提出了一种处理分类和自由形式约束的统一方法。关于文本生成和机器翻译的实验证明了我们的方法优于基准的优势,对基准的准确性,文本质量和可扩展性。

Recently, multi-aspect controllable text generation that controls the generated text in multiple aspects (e.g., sentiment, topic, and keywords) has attracted increasing attention. Although methods based on parameter efficient tuning like prefix-tuning could achieve multi-aspect controlling in a plug-and-play way, the mutual interference of multiple prefixes leads to significant degeneration of constraints and limits their extensibility to training-time unseen aspect combinations. In this work, we provide a theoretical lower bound for the interference and empirically found that the interference grows with the number of layers where prefixes are inserted. Based on these analyses, we propose using trainable gates to normalize the intervention of prefixes to restrain the growing interference. As a result, controlling training-time unseen combinations of aspects can be realized by simply concatenating corresponding plugins such that new constraints can be extended at a lower cost. In addition, we propose a unified way to process both categorical and free-form constraints. Experiments on text generation and machine translation demonstrate the superiority of our approach over baselines on constraint accuracy, text quality, and extensibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源