论文标题
量子不确定性作为固有时钟
Quantum Uncertainty as an Intrinsic Clock
论文作者
论文摘要
在量子力学中,将经典粒子提升到波功能,从而获得了更多的自由度。例如,在半古典制度中,尽管位置和动量期望值遵循经典轨迹,但波包的不确定性可以独立发展和跳动。我们使用这种见解来重新审视时间依赖的谐波中的一维粒子的动力学。可以通过考虑时间重新聚体和Virasoro组的动作来解决它,以将系统映射到恒定频率的谐波振荡器。我们证明,通过量化系统并查看高斯波包宽度的演变,可以自然解决这种简化的时间变量。我们进一步表明,在时间依赖的谐波电位中,Ermakov-Lewis不变,实际上是高斯波盒的量子不确定性。这自然会将经典的Ermakov-Lewis扩展到Schrodinger方程后量子系统的运动常数。最后,我们讨论了量子重力和量子宇宙学的潜在应用。
In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom. For instance, in the semi-classical regime, while the position and momentum expectation values follow the classical trajectory, the uncertainty of a wave-packet can evolve and beat independently. We use this insight to revisit the dynamics of a 1d particle in a time-dependent harmonic well. One can solve it by considering time reparameterizations and the Virasoro group action to map the system to the harmonic oscillator with constant frequency. We prove that identifying such a simplifying time variable is naturally solved by quantizing the system and looking at the evolution of the width of a Gaussian wave-packet. We further show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet. This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrodinger equation. We conclude with a discussion of potential applications to quantum gravity and quantum cosmology.