论文标题

在方形晶格上,Abrikosov Fermion均值Ansätze的射影对称群体分类

Projective symmetry group classification of Abrikosov fermion mean-field ansätze on the square-octagon lattice

论文作者

Maity, Atanu, Ferrari, Francesco, Thomale, Ronny, Mandal, Saptarshi, Iqbal, Yasir

论文摘要

我们在方形 - 八角形晶格上对对称量子旋转液体进行对称量子自旋液体的分类。使用Spin-$ 1/2 $的Abrikosov Fermion表示形式,我们获得了$ 32 $ $ SU(2)$,$ 1808 $ $ U(1)$和$ 384 $ $ \ MATHBB {Z} _ {2} $ algebraic psgs。将自己限制在具有短距离幅度的卑鄙的野外partonAnsätze上,分类减少到有限的数字,其中4 $ su(2)$(2)$,24 $ u(1)$和36 $ \ MATHBB {z} _ {2} _ {2} $,不同的阶段。我们以令人沮丧的耦合对海森堡汉密尔顿人的自洽处理中讨论了他们的基态特性和旋转分散体。

We perform a projective symmetry group (PSG) classification of symmetric quantum spin liquids with different gauge groups on the square-octagon lattice. Employing the Abrikosov fermion representation for spin-$1/2$, we obtain $32$ $SU(2)$, $1808$ $U(1)$ and $384$ $\mathbb{Z}_{2}$ algebraic PSGs. Constraining ourselves to mean-field parton ansätze with short-range amplitudes, the classification reduces to a limited number, with 4 $SU(2)$, 24 $U(1)$ and 36 $\mathbb{Z}_{2}$, distinct phases. We discuss their ground state properties and spinon dispersions within a self-consistent treatment of the Heisenberg Hamiltonian with frustrating couplings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源