论文标题

在神经机器翻译中无监督幻觉检测的最佳传输

Optimal Transport for Unsupervised Hallucination Detection in Neural Machine Translation

论文作者

Guerreiro, Nuno M., Colombo, Pierre, Piantanida, Pablo, Martins, André F. T.

论文摘要

神经机器翻译(NMT)已成为现实世界机器翻译应用中的事实上标准。但是,NMT模型可以严重破坏用户信任的严重病理性翻译(称为幻觉)。因此,实施有效的预防策略以确保其适当的功能变得至关重要。在本文中,我们通过遵循简单的直觉来解决NMT中幻觉检测的问题:由于幻觉与源含量分离,因此它们表现出与质量质量翻译的统计学上不同的编码器核对器注意模式。我们使用最佳传输配方将这个问题构成了这个问题,并提出了一个完全无监督的插电探测器,该检测器可与任何基于注意的NMT模型一起使用。实验结果表明,我们的检测器不仅胜过所有以前的基于模型的检测器,而且还与使用经过数百万样品训练的大型模型的检测器具有竞争力。

Neural machine translation (NMT) has become the de-facto standard in real-world machine translation applications. However, NMT models can unpredictably produce severely pathological translations, known as hallucinations, that seriously undermine user trust. It becomes thus crucial to implement effective preventive strategies to guarantee their proper functioning. In this paper, we address the problem of hallucination detection in NMT by following a simple intuition: as hallucinations are detached from the source content, they exhibit encoder-decoder attention patterns that are statistically different from those of good quality translations. We frame this problem with an optimal transport formulation and propose a fully unsupervised, plug-in detector that can be used with any attention-based NMT model. Experimental results show that our detector not only outperforms all previous model-based detectors, but is also competitive with detectors that employ large models trained on millions of samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源