论文标题
styleflow:通过标准化流量的归一化文本样式转移来解开潜在表示
StyleFlow: Disentangle Latent Representations via Normalizing Flow for Unsupervised Text Style Transfer
论文作者
论文摘要
文本样式转移旨在在保留其内容的同时改变句子的样式。由于缺乏平行语料库,最近的工作集中在无监督的方法上,并且经常使用循环构造来训练模型。由于自行车构建有助于通过将转移的句子重新置于原始风格的句子来提高模型的样式转移能力,因此它在无监督的文本样式传输任务中带来了内容损失。在本文中,我们提出了一种新型的基于分解的样式传输模型样式流,以增强内容保存。 StyleFlow不仅可以进行前进过程以获取输出,还可以通过输出推断输入,而不是典型的编码器传统方案。我们设计了一个注意力感知的耦合层,以解开内容表示形式和句子的样式表示。此外,我们提出了一种基于归一流流量的数据增强方法,以改善模型的鲁棒性。实验结果表明,我们的模型可以有效地保留内容,并在最多的指标上实现最新的性能。
Text style transfer aims to alter the style of a sentence while preserving its content. Due to the lack of parallel corpora, most recent work focuses on unsupervised methods and often uses cycle construction to train models. Since cycle construction helps to improve the style transfer ability of the model by rebuilding transferred sentences back to original-style sentences, it brings about a content loss in unsupervised text style transfer tasks. In this paper, we propose a novel disentanglement-based style transfer model StyleFlow to enhance content preservation. Instead of the typical encoder-decoder scheme, StyleFlow can not only conduct the forward process to obtain the output, but also infer to the input through the output. We design an attention-aware coupling layers to disentangle the content representations and the style representations of a sentence. Besides, we propose a data augmentation method based on Normalizing Flow to improve the robustness of the model. Experiment results demonstrate that our model preserves content effectively and achieves the state-of-the-art performance on the most metrics.