论文标题
使用Schubert分析的引导椭圆形Feynman积分
Bootstrapping elliptic Feynman integrals using Schubert analysis
论文作者
论文摘要
事实证明,该符号引导是计算多组载体的Feynman积分和散射幅度的强大工具。在这封信中,我们启动了椭圆形Feynman积分的符号引导。具体而言,我们在四个维度上启动了十二点双框双框积分的符号,这取决于九个双符合符号的交叉比率。我们通过舒伯特型分析获得了包含100个对数以及9个简单椭圆积分的符号字母,我们同样将其概括为椭圆情况。特别是,我们发现了结果的(2,2) - 生产的紧凑,单行公式。
The symbol bootstrap has proven to be a powerful tool for calculating polylogarithmic Feynman integrals and scattering amplitudes. In this letter, we initiate the symbol bootstrap for elliptic Feynman integrals. Concretely, we bootstrap the symbol of the twelve-point two-loop double-box integral in four dimensions, which depends on nine dual-conformal cross ratios. We obtain the symbol alphabet, which contains 100 logarithms as well as 9 simple elliptic integrals, via a Schubert-type analysis, which we equally generalize to the elliptic case. In particular, we find a compact, one-line formula for the (2,2)-coproduct of the result.