论文标题

具有奇异灵敏度的两个物种趋化效果系统:全球存在,有限和持久性

Two-species chemotaxis-competition system with singular sensitivity: Global existence, boundedness, and persistence

论文作者

Kurt, Halil Ibrahim, Shen, Wenxian

论文摘要

本文涉及以下具有奇异灵敏度和Lotka-Volterra竞争动力学的抛物线抛物性 - 羟基递质趋化性系统, \ begin {equination} \ begin {case} u_t =ΔU-χ_1\ nabla \ cdot(\ frac {\ frac {u} {w} {w} \ nabla w)+u(a_1-b_1u-c_1v) (\ frac {v} {w} \ nabla w)+v(a_2-b_2v-c_2u),\ quad&x \ inω\ cr 0 =Δw-μw+νu+νu+νu+λv,\ quad&x \ quad&x \ inm. v} {\ partial n} = \ frac {\ partial w} {\ partial n} = 0,\ quad&x \ in \partialΩ,\ end {cases} \ end {case} \ end {equication} $ b_i $,$ c_i $($ i = 1,2 $)和$μ,\,ν,\,λ$是正常数。这是具有奇异灵敏度和Lotka-volterra竞争动力学的两种趋化性系统上的第一项作品。除其他外,我们证明,对于任何给定的非负初始数据$ u_0,v_0 \ in c^0(\barΩ)$,带有$ u_0+v_0+v_0 \ not \ equiv 0 $,(0.1)具有独特的全球定义经典解决方案$(u(t,x; x; x; u_0,v_0,v_0,v_0,v_0,v_0,v(t,t,t,x; u_0,v_0)使用$ u(0,x; u_0,v_0)= u_0(x)$和$ v(0,x; u_0,v_0)= v_0(x)$,规定$ \ min \ {a_1,a_2 \} $相对于$χ_1,χ_2$ andχ_2$和$ _2 $和$ u_0+v_0 $不是小。此外,在相同的条件下,我们证明\ begin {equation*} \ limsup_ {t \ to \ infty} \ | u(t,\ cdot; u_0,v_0)+v(t,\ cdot; u_0,v_0,v_0)\ | _ \ | _ \ infty \ infty \ le m^*, \ liminf_ {t \ to \ infty} \ inf_ {x \inΩ}(u(t,t,x,x,u_0,v_0,v_0)+v(t,x; u_0,v_0,v_0))\ ge m^*,\ ge m^*,\ end End {equation {equation*}对于某些积极的常数$ m^*,m^*,m^*,m^*,m^*$ us of $ u _0 $ u_0 $ u_0,commentive of $ u_0 $ u_0,commentive of $ u_0 $ u_0 $ ud $ u_0,commention commention,持久性。

This paper is concerned with the following parabolic-parabolic-elliptic chemotaxis system with singular sensitivity and Lotka-Volterra competitive kinetics, \begin{equation} \begin{cases} u_t=Δu-χ_1 \nabla\cdot (\frac{u}{w} \nabla w)+u(a_1-b_1u-c_1v) ,\quad &x\in Ω\cr v_t=Δv-χ_2 \nabla\cdot (\frac{v}{w} \nabla w)+v(a_2-b_2v-c_2u),\quad &x\in Ω\cr 0=Δw-μw +νu+ λv,\quad &x\in Ω\cr \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=\frac{\partial w}{\partial n}=0,\quad &x\in\partialΩ, \end{cases} \end{equation} where $Ω\subset \mathbb{R}^N$ is a bounded smooth domain, and $χ_i$, $a_i$, $b_i$, $ c_i$ ($i=1,2$) and $μ,\, ν, \, λ$ are positive constants. This is the first work on two-species chemotaxis-competition system with singular sensitivity and Lotka-Volterra competitive kinetics. Among others, we prove that for any given nonnegative initial data $u_0,v_0\in C^0(\barΩ)$ with $u_0+v_0\not \equiv 0$, (0.1) has a unique globally defined classical solution $(u(t,x;u_0,v_0),v(t,x;u_0,v_0),w(t,x;u_0,v_0))$ with $u(0,x;u_0,v_0)=u_0(x)$ and $v(0,x;u_0,v_0)=v_0(x)$ provided that $\min\{a_1,a_2\}$ is large relative to $χ_1,χ_2$ and $u_0+v_0$ is not small. Moreover, under the same condition, we prove that \begin{equation*} \limsup_{t\to\infty} \|u(t,\cdot;u_0,v_0)+v(t,\cdot;u_0,v_0)\|_\infty\le M^*, \end{equation*} and \begin{equation*} \liminf_{t\to\infty} \inf_{x\inΩ}(u(t,x,u_0,v_0)+v(t,x;u_0,v_0))\ge m^*, \end{equation*} for some positive constants $M^*,m^*$ independent of $u_0,v_0$, the latter is referred to as combined pointwise persistence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源