论文标题

部分转置力矩的纠缠相图

Entanglement phase diagrams from partial transpose moments

论文作者

Carrasco, Jose, Votto, Matteo, Vitale, Vittorio, Kokail, Christian, Neven, Antoine, Zoller, Peter, Vermersch, Benoît, Kraus, Barbara

论文摘要

我们介绍了实验和数值可访问的数量,可用于区分随机纠缠状态的各个家庭。为此,我们分析了三角岩降低三方纯状态的纠缠特性。我们介绍了部分转移的降低密度矩阵的低阶矩的简单多项式的比例,并表明该比率在各种纠缠状态的家族的热力学极限中占据定义明确的值。这允许以一种可以从量子信息的角度理解的方式来彻底区分纠缠阶段。我们尤其分析了HAAR随机状态的纠缠相图,形成了混乱的哈密顿量的演变,稳定器状态是Clifford Circuits,Matrix产品状态和费米子高斯州的输出。我们表明,对于HAAR随机陈述,所得相图类似于通过消极性获得的相图,并且在上面提到的所有情况下,都观察到非常独特的行为。我们的结果可用于在量子计算机和可编程量子模拟器中形成的量子状态下,在实验中测试不同类型的混合状态随机性的必要条件。

We present experimentally and numerically accessible quantities that can be used to differentiate among various families of random entangled states. To this end, we analyze the entanglement properties of bipartite reduced states of a tripartite pure state. We introduce a ratio of simple polynomials of low-order moments of the partially transposed reduced density matrix and show that this ratio takes well-defined values in the thermodynamic limit for various families of entangled states. This allows to sharply distinguish entanglement phases, in a way that can be understood from a quantum information perspective based on the spectrum of the partially transposed density matrix. We analyze in particular the entanglement phase diagram of Haar random states, states resulting form the evolution of chaotic Hamiltonians, stabilizer states, which are outputs of Clifford circuits, Matrix Product States, and fermionic Gaussian states. We show that for Haar random states the resulting phase diagram resembles the one obtained via the negativity and that for all the cases mentioned above a very distinctive behaviour is observed. Our results can be used to experimentally test necessary conditions for different types of mixed-state randomness, in quantum states formed in quantum computers and programmable quantum simulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源