论文标题

农药浓度监测:研究左侧审查数据中的时空模式

Pesticide concentration monitoring: investigating spatio-temporal patterns in left censored data

论文作者

Laroche, Clément, Olteanu, Madalina, Rossi, Fabrice

论文摘要

鉴于对环境安全的主要问题以及增加公共卫生风险的可能性,监测农药浓度非常重要。该过程的一个重要方面是从大量收集的数据中找到异常信号。这种数据通常很复杂,因为它具有定量的限制,导致左侧审查的观测值,以及从测量站的时间和空间不规则的抽样过程中。目前的手稿准确解决了在农药浓度水平上检测时空集体异常的问题,并引入了一种用于处理时空异质性的新方法。后者结合了应用于所有站点的一系列最大每日值的更改点检测过程,以及针对站点的空间分割的聚类步骤。通过假设左左右参数模型(按零件固定)来处理定量限制的限制。空间分割考虑了地理条件,可能基于河流网络,风向等。条件到时间段和空间群集,最终可以分析数据并确定上下文异常。在中心谷区域的地表水域中包含Prosulfocarb浓度水平的数据集上进行了详细说明。

Monitoring pesticide concentration is very important for public authorities given the major concerns for environmental safety and the likelihood for increased public health risks. An important aspect of this process consists in locating abnormal signals, from a large amount of collected data. This kind of data is usually complex since it suffers from limits of quantification leading to left censored observations, and from the sampling procedure which is irregular in time and space across measuring stations. The present manuscript tackles precisely the issue of detecting spatio-temporal collective anomalies in pesticide concentration levels, and introduces a novel methodology for dealing with spatio-temporal heterogeneity. The latter combines a change-point detection procedure applied to the series of maximum daily values across all stations, and a clustering step aimed at a spatial segmentation of the stations. Limits of quantification are handled in the change-point procedure, by supposing an underlying left-censored parametric model, piece-wise stationary. Spatial segmentation takes into account the geographical conditions, and may be based on river network, wind directions, etc. Conditionally to the temporal segment and the spatial cluster, one may eventually analyse the data and identify contextual anomalies. The proposed procedure is illustrated in detail on a data set containing the prosulfocarb concentration levels in surface waters in Centre-Val de Loire region.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源