论文标题
ARO-NET:从锚固的径向观察中学习隐式领域
ARO-Net: Learning Implicit Fields from Anchored Radial Observations
论文作者
论文摘要
我们引入了锚定的径向观测(ARO),这是一种新型的形状编码,用于学习3D形状的隐式场表示,这是类别 - 敏捷的且可推广的显着形状变化。我们工作背后的主要思想是通过从一组称为锚点的观点的部分观察来理解形状。我们通过斐波那契采样来开发一般和统一的形状表示形式,并设计基于坐标的深神经网络以预测空间查询点的占用值。与使用全局形状特征的先前神经隐式模型不同,我们的形状编码器在上下文特定的特定特征上运行。为了预测点的占用,从输入查询点周围锚定的锚点的角度进行局部观察到的形状信息,然后通过注意模块进行编码和汇总,然后进行隐式解码。我们在稀疏点云中的表面重建中展示了我们网络的质量和通用性,并在新颖和看不见的对象类别,“单形”训练中进行了测试,并与先进的重建和经典方法进行了比较,以进行重建和经典方法。
We introduce anchored radial observations (ARO), a novel shape encoding for learning implicit field representation of 3D shapes that is category-agnostic and generalizable amid significant shape variations. The main idea behind our work is to reason about shapes through partial observations from a set of viewpoints, called anchors. We develop a general and unified shape representation by employing a fixed set of anchors, via Fibonacci sampling, and designing a coordinate-based deep neural network to predict the occupancy value of a query point in space. Differently from prior neural implicit models that use global shape feature, our shape encoder operates on contextual, query-specific features. To predict point occupancy, locally observed shape information from the perspective of the anchors surrounding the input query point are encoded and aggregated through an attention module, before implicit decoding is performed. We demonstrate the quality and generality of our network, coined ARO-Net, on surface reconstruction from sparse point clouds, with tests on novel and unseen object categories, "one-shape" training, and comparisons to state-of-the-art neural and classical methods for reconstruction and tessellation.