论文标题
一个非线性绑定用于子序列总和的数量
A nonlinear bound for the number of subsequence sums
论文作者
论文摘要
我们表明,ABELIAN组上有限的无零序列$α$至少具有$ c |α|^{4/3} $不同的子序列总和,除非$α$由其少数条款“控制”; $ |α| $表示$α$的项数,$ c> 0 $是绝对常数。
We show that a finite zero-sum-free sequence $α$ over an abelian group has at least $c|α|^{4/3}$ distinct subsequence sums, unless $α$ is "controlled" by a small number of its terms; here $|α|$ denotes the number of terms of $α$, and $c>0$ is an absolute constant.