论文标题

在$ gg \ to H $生产中以近代领先的功率和端点差异分解

Factorization at Next-to-Leading Power and Endpoint Divergences in $gg\to h$ Production

论文作者

Liu, Ze Long, Neubert, Matthias, Schnubel, Marvin, Wang, Xing

论文摘要

我们得出了一个由光Quark Loop诱导的Gluon-Gluon融合中的Higgs-Boson产生幅度的分解定理,该定理是在软性共线有效理论中以近代领导的能力作用的。该分解在结构上与$ H \toγγ$衰减幅度所获得的分解相似,但由于外部颜色电荷而引起的其他并发症会引起其他并发症。我们展示了先前工作中基于重构化的减法方案如何导致无端点差异的分解定理。我们使用重新归一化的组技术来预测三环$ gg \ to h $ formage的对数增强术语的订单$α_s^3 \ ln^k(-m_h^2/m_b^2)$,$ k = 6,5,4,3 $。我们还重新恢复了前三塔领先对数的塔,$α_s^n \ ln^{2n-k}(-m_h^2/m_b^2)$ $ k = 0,1,2 $,以所有扰动理论的顺序为0,1,2 $。

We derive a factorization theorem for the Higgs-boson production amplitude in gluon-gluon fusion induced by a light-quark loop, working at next-to-leading power in soft-collinear effective theory. The factorization is structurally similar to that obtained for the $h\toγγ$ decay amplitude induced by a light-quark loop, but additional complications arise because of external color charges. We show how the refactorization-based subtraction scheme developed in previous work leads to a factorization theorem free of endpoint divergences. We use renormalization-group techniques to predict the logarithmically enhanced terms in the three-loop $gg\to h$ form factor of order $α_s^3\ln^k(-M_h^2/m_b^2)$ with $k=6,5,4,3$. We also resum the first three towers of leading logarithms, $α_s^n\ln^{2n-k}(-M_h^2/m_b^2)$ with $k=0,1,2$, to all orders of perturbation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源