论文标题

Simplestyle:适应性的风格转移方法

SimpleStyle: An Adaptable Style Transfer Approach

论文作者

Bandel, Elron, Katz, Yoav, Slonim, Noam, Ein-Dor, Liat

论文摘要

属性控制的文本重写,也称为文本样式转移,在调节文本培训数据和机器生成的文本的属性和偏见中起着至关重要的作用。在这项工作中,我们提出了SimpleStyle,这是一种由两种简单成分组成的样式转移的简约但有效的方法:受控的DeNoising和输出过滤。尽管我们的方法很简单,可以用几行代码简洁地描述,但它与以前的自动和人类评估中先前最新方法具有竞争力。为了证明我们系统的适应性和实践价值超出了学术数据,我们将使用Simplestyle来传输来自社交网络的现实世界文本数据中出现的广泛的文本属性。此外,我们介绍了一种新颖的“软尖”技术,进一步改善了系统的性能。我们还表明,教授学生模型来生成简单的输出可以导致系统的系统,该系统仅使用单个贪婪的样本执行等效质量的样式转移。最后,我们建议我们的方法作为在该领域取得进展的基本不相容基线问题的补救措施。我们将协议作为希望在属性受控文本重写领域取得增量进步的作品的简单但强大的基线。

Attribute-controlled text rewriting, also known as text style-transfer, has a crucial role in regulating attributes and biases of textual training data and a machine generated text. In this work we present SimpleStyle, a minimalist yet effective approach for style-transfer composed of two simple ingredients: controlled denoising and output filtering. Despite the simplicity of our approach, which can be succinctly described with a few lines of code, it is competitive with previous state-of-the-art methods both in automatic and in human evaluation. To demonstrate the adaptability and practical value of our system beyond academic data, we apply SimpleStyle to transfer a wide range of text attributes appearing in real-world textual data from social networks. Additionally, we introduce a novel "soft noising" technique that further improves the performance of our system. We also show that teaching a student model to generate the output of SimpleStyle can result in a system that performs style transfer of equivalent quality with only a single greedy-decoded sample. Finally, we suggest our method as a remedy for the fundamental incompatible baseline issue that holds progress in the field. We offer our protocol as a simple yet strong baseline for works that wish to make incremental advancements in the field of attribute controlled text rewriting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源