论文标题
模量空间重建和重力较弱
Moduli Space Reconstruction and Weak Gravity
论文作者
论文摘要
我们提出了一种通过使用gopakumar-vafa不变式来识别所有与拖鞋或韦尔反射相关的所有几何阶段的方法,以构建任何卡拉比三倍的扩展的kähler锥。通过这种方式,我们获得了所有有利的卡拉比(Calabi-Yau)三倍超过的kähler模量空间,其中包括$ h^{1,1} \ le 4 $,包括福利和非曲子相。在这种情况下,我们通过使用gopakumar-vafa不变性来计算BPS状态,对弱重力猜想进行明确的测试。我们所有的例子都满足了塔/sublattice WGC的满足,实际上,它们甚至满足了更强的晶格WGC。
We present a method to construct the extended Kähler cone of any Calabi-Yau threefold by using Gopakumar-Vafa invariants to identify all geometric phases that are related by flops or Weyl reflections. In this way we obtain the Kähler moduli spaces of all favorable Calabi-Yau threefold hypersurfaces with $h^{1,1} \le 4$, including toric and non-toric phases. In this setting we perform an explicit test of the Weak Gravity Conjecture by using the Gopakumar-Vafa invariants to count BPS states. All of our examples satisfy the tower/sublattice WGC, and in fact they even satisfy the stronger lattice WGC.