论文标题
太阳能原型原子IRAS的分子环境16293-2422
The molecular environment of the solar-type protostar IRAS 16293-2422
论文作者
论文摘要
研究导致低质量恒星形成的物理和化学过程对于理解我们的太阳和太阳系的起源至关重要。特别是,分析分子的发射和吸收线是在恒星形成的早期阶段获取有关运动学和化学的信息的基本工具。在这项工作中,我们旨在检查围绕非常众所周知的低质量二元Protostar Iras Iras 16293-2422和Prestellar Core 16293E的材料的空间结构和分子丰度,这些原始结构嵌入了Lynds 1689n的乌云。 我们已经使用了Atacama Pathfinder实验(APEX)12米的亚毫米望远镜上安装的LasmA杂型阵列,以图像一个约0.12x0.12pc $^2 $ a of IRAS 16293-2422和16293E和16293E的区域,并研究其在频率范围为45.6GHz的分子环境,范围为27777777555。 我们已经从36种分子物种中确定了144种转变,包括同位素。这些地图揭示了包膜在云核周围具有复杂的形态,并称为E1,E2,W1,W2和HE2,包括IRAS 16293-2422引起的流出结构。使用para-h $ _2 $ CO的几个过渡,我们为IRAS 16293-2422和周围排放峰衍生了新的下限。基于这些温度,所有检测到的物种的h $ _2 $体积密度和柱密度均在云芯和所有发射峰周围得出。 我们的新观察进一步证实了IRAS 16293-2422与Prestellar Core 16293E相互作用的流出的情况。我们观察到整个分子云的大规模速度梯度。此外,我们在检查的位置看到了明显的化学差异。数据表明,发射峰W2可能与较冷的灰尘源有关。
Studying the physical and chemical processes leading to the formation of low-mass stars is crucial for understanding the origin of our Sun and the Solar System. In particular, analyzing the emission and absorption lines from molecules is a fundamental tool to obtain information on the kinematics and chemistry at the very early stages of star formation. In this work we aim to examine the spatial structures and molecular abundances of material surrounding the very well-known low-mass binary protostar IRAS 16293-2422 and the prestellar core 16293E, which are embedded in the Lynds 1689N dark cloud. We have used the LAsMA heterodyne array installed on the Atacama Pathfinder EXperiment (APEX) 12 meter submillimeter telescope to image a region of about 0.12x0.12pc$^2$ around IRAS 16293-2422 and 16293E and to study their molecular environment covering 45.6GHz in a frequency range from 277GHz to 375GHz. We have identified 144 transitions from 36 molecular species, including isotopologues. The maps reveal the envelope to have a complex morphology around the cloud cores and the emission peaks known as E1, E2, W1, W2, and HE2, including the outflow structure arising from IRAS 16293-2422. Using several transitions of para-H$_2$CO, we have derived new lower limits for the kinetic temperatures toward IRAS 16293-2422 and the surrounding emission peaks. Based on these temperatures, H$_2$ volume densities and column densities for all detected species were derived around the cloud cores and all emission peaks. Our new observations further confirm the scenario of an outflow arising from IRAS 16293-2422 interacting with the prestellar core 16293E. We observe a large-scale velocity gradient across the molecular cloud. Furthermore, we see clear chemical differences at the examined positions. The data suggests that emission peak W2 may be related to a colder dust source.