论文标题

灰尘聚集体的碰撞生长和破碎。 ii。冰冷碎片的质量分布

Collisional Growth and Fragmentation of Dust Aggregates. II. Mass Distribution of Icy Fragments

论文作者

Hasegawa, Yukihiko, Suzuki, Takeru K., Tanaka, Hidekazu, Kobayashi, Hiroshi, Wada, Koji

论文摘要

通过执行$ n $ body的模拟,我们研究了由亚微米大小的冰灰尘单体组成的灰尘聚集体之间的基本过程。我们检查了碰撞结果中碎片的质量分布,质量比和碰撞灰尘聚集体之间的碰撞速度。我们通过数值拟合模拟结果得出了大残留物和小片段的质量分布的分析表达。我们针对大量残余物质量的分析公式可以再现从大靶标的质量转移到小弹丸的贡献,该弹丸的质量比为$ \ gtrsim 3 $,并在先前的研究中显示(Hasegawa等,2021年)。我们发现,小片段的累积质量分布的幂律指数与质量比无关,仅弱取决于碰撞速度。另一方面,随着固定质量比的总质量碰撞骨料的增加,单个灰尘单体的片段质量分数减少。这种趋势意味着通过碰撞碎片产生大量的单个灰尘单体需要多个分层破坏性冲突(即碎片之间的碰撞,碎片之间的碰撞)。我们的片段模型表明,在片段上集成的总几何横截面估计是目标的几何横截面的相同顺序。

By performing $N$-body simulations, we investigated fundamental processes of collisions between dust aggregates composed of submicron-sized icy dust monomers. We examined the mass distribution of fragments in the collisional outcomes in a wide range of the mass ratio and the collision velocity between colliding dust aggregates. We derived analytic expressions of the mass distribution of large remnants and small fragments by numerical fitting to the simulation results. Our analytic formulae for masses of the large remnants can reproduce the contribution of mass transfer from a large target to a small projectile, which occurs for a mass ratio of $\gtrsim 3$ and is shown in a previous study (Hasegawa et al. 2021). We found that the power-law index of the cumulative mass distribution of the small fragments is independent of the mass ratio and only weakly dependent on the collision velocity. On the other hand, the mass fraction of fragments of individual dust monomers decreases with an increasing total mass of colliding aggregates for a fixed mass ratio. This tendency implies that multiple hierarchical disruptive collisions (i.e., collisions between fragments, collisions between fragments of fragments) are required for producing a large amount of individual dust monomers via collisional fragmentation. Our fragment model suggests that the total geometric cross section integrated over the fragments is estimated to be about the same order of the geometric cross section of the target.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源