论文标题
通过Euler特征转换来检测时间形状变化
Detecting Temporal shape changes with the Euler Characteristic Transform
论文作者
论文摘要
器官是多细胞结构,从干细胞中在体外培养到类似于特定的器官(例如,大脑,肝脏)的三维组成。这些模型系统的形状和组成的动态变化可用于了解健康和疾病中突变和治疗的影响。在本文中,我们在拓扑数据分析领域提出了一种新技术,用于通过Euler特征转换(检测)检测时间形状变化。检测是动态变化形状的旋转不变标志。我们在小鼠小肠道器官实验的分段视频的数据集上演示了我们的方法,并表明它的表现优于经典形状描述符。我们验证我们在合成器官数据集上的方法,并说明其对3D的概括。我们得出的结论是,检测提供了严格的器官定量,并打开了可扩展不同生长状态和评估治疗效果的计算可扩展方法。
Organoids are multi-cellular structures which are cultured in vitro from stem cells to resemble specific organs (e.g., brain, liver) in their three-dimensional composition. Dynamic changes in the shape and composition of these model systems can be used to understand the effect of mutations and treatments in health and disease. In this paper, we propose a new technique in the field of topological data analysis for DEtecting Temporal shape changes with the Euler Characteristic Transform (DETECT). DETECT is a rotationally invariant signature of dynamically changing shapes. We demonstrate our method on a data set of segmented videos of mouse small intestine organoid experiments and show that it outperforms classical shape descriptors. We verify our method on a synthetic organoid data set and illustrate how it generalises to 3D. We conclude that DETECT offers rigorous quantification of organoids and opens up computationally scalable methods for distinguishing different growth regimes and assessing treatment effects.