论文标题
雷诺数的缩放量表和地质对流中的能量光谱
Reynolds number scaling and energy spectra in geostrophic convection
论文作者
论文摘要
我们报告了旋转旋转旋转的地质环境方面旋转雷利 - 贝纳德对流的流量测量。我们应用立体粒子图像速度法以测量水填充圆柱对流容器的水平横截面中的三个成分。以一个不变的小ekman编号$ ek = 5 \ times 10^{ - 8} $,我们在$ 10^{11} $和$ 4 \ times 10^{12} $之间更改瑞利号$ ra $,以涵盖GeoStrophic对流中观察到的各种子规则。我们还包括一个非旋转实验。将速度波动的缩放(表示为雷诺数$ re $)与表达粘性的平衡的理论关系 - 架构 - 库里奥利(VAC)和科里奥利斯 - 公管 - 近距离 - 安置式(CIA)力量。根据我们的结果,我们无法确定此处最适用的平衡;两种缩放关系都匹配得很好。当前数据与其他几个文献数据集的比较表明,随着$ ek $的减少,速度无扩散缩放的收敛性。但是,在较低的$ ra $中,使用限制域的使用导致在侧壁附近的墙壁模式下引起对流的突出对流。整体流动组织的动能光谱点填充了横截面的四极涡流。这种四极涡流是一种准二维特征,因为它仅在基于水平速度成分的能量光谱中表现出来。在较大的$ ra $下,光谱揭示了缩放范围的发展,指数接近$ -5/3 $,这是三维湍流中惯性范围的经典指数。较陡的$ re(ra)$在低$ ek $上的缩放和能量光谱中缩放范围的开发是明显的指标,即接近完全开发的,无扩散的湍流状态,从而勾勒出清晰的视角以进行进一步研究。
We report flow measurements in rotating Rayleigh--Bénard convection in the rotationally-constrained geostrophic regime. We apply stereoscopic particle image velocimetry to measure the three components of velocity in a horizontal cross-section of a water-filled cylindrical convection vessel. At a constant, small Ekman number $Ek=5\times 10^{-8}$ we vary the Rayleigh number $Ra$ between $10^{11}$ and $4\times 10^{12}$ to cover various subregimes observed in geostrophic convection. We also include one nonrotating experiment. The scaling of the velocity fluctuations (expressed as the Reynolds number $Re$) is compared to theoretical relations expressing balances of viscous--Archimedean--Coriolis (VAC) and Coriolis--inertial--Archimedean (CIA) forces. Based on our results we cannot decide which balance is most applicable here; both scaling relations match equally well. A comparison of the current data with several other literature datasets indicates a convergence towards diffusion-free scaling of velocity as $Ek$ decreases. However, the use of confined domains leads at lower $Ra$ to prominent convection in the wall mode near the sidewall. Kinetic energy spectra point at an overall flow organisation into a quadrupolar vortex filling the cross-section. This quadrupolar vortex is a quasi-two-dimensional feature as it only manifests in energy spectra based on the horizontal velocity components. At larger $Ra$ the spectra reveal the development of a scaling range with exponent close to $-5/3$, the classical exponent for inertial-range scaling in three-dimensional turbulence. The steeper $Re(Ra)$ scaling at low $Ek$ and development of a scaling range in the energy spectra are distinct indicators that a fully developed, diffusion-free turbulent flow state is approached, sketching clear perspectives for further investigation.