论文标题
在存在对称性扰动的情况下,跨越量子相变的广义千里布式方案中的超平衡大小缩放
Out-of-equilibrium finite-size scaling in generalized Kibble-Zurek protocols crossing quantum phase transitions in the presence of symmetry-breaking perturbations
论文作者
论文摘要
我们研究了对称性扰动在多体系统的不平衡外量子动力学中的影响,该系统通过时间依赖性对称性呈现参数缓慢地跨越连续的量子转变(CQT)。为此,我们在动态重新归一化组框架中分析了由广义的千里布尔·泽尔克(KZ)协议产生的不平衡动力学,允许有限大小的系统。我们表明,通用可观察物的时间依赖性源于kz协议中参数变化的时间尺度$ t_s $之间的相互作用,系统的大小$ l $ $ l $ $ h $ y $ h $ y $ $ $ t_ $ t_此外,基于量子系统中缓慢变化的一阶绝热近似的缩放参数使我们能够在模型参数的某些范围内表征对绝热制度的方法(例如,当我们在$ t_s \ to \ to \ ins $ l \ to $ l \到\ infty $之前进行$ t_s \ to \ infty $),预测异常抑制的非限制性行为。在静态纵向场的存在下,沿广泛的Kz协议的数值分析沿广义KZ协议沿广义KZ协议沿广义KZ方案进行了数值分析,该量子量子质量链沿广义KZ方案沿通用KZ方案进行了数值分析,而在静态纵向场的存在下,跨度的横向场横穿了其$ Z_2 $对称性。
We study the effects of symmetry-breaking perturbations in the out-of-equilibrium quantum dynamics of many-body systems slowly driven across a continuous quantum transition (CQT) by a time-dependent symmetry-preserving parameter. For this purpose, we analize the out-of-equilibrium dynamics arising from generalized Kibble-Zurek (KZ) protocols, within a dynamic renormalization-group framework allowing for finite-size systems. We show that the time dependence of generic observables develops an out-of-equilibrium finite-size scaling (FSS) behavior, arising from the interplay between the time scale $t_s$ of the parameter variations in the KZ protocol, the size $L$ of the system, and the strength $h$ of the symmetry-breaking perturbation, in the limit of large $t_s$ and $L$. Moreover, scaling arguments based on the first-order adiabatic approximation of slow variations in quantum systems allow us to characterize the approach to the adiabatic regimes for some limits of the model parameters (for example when we take $t_s\to \infty$ before $L\to\infty$), predicting asymptotic power-law suppressions of the nonadiabatic behaviors in the adiabatic limits. This out-of-equilibrium FSS is supported by numerical analyses for the paradigmatic quantum Ising chain along generalized KZ protocols, with a time-dependent transverse field crossing its CQT, in the presence of a static longitudinal field breaking its $Z_2$ symmetry.