论文标题
设备绑定的键键无件硬件AI模型IP保护:PUF和PERTUTE-DIFFUSION启用加密方法
Device-Bind Key-Storageless Hardware AI Model IP Protection: A PUF and Permute-Diffusion Encryption-Enabled Approach
论文作者
论文摘要
机器学习作为服务(MLAAS)框架为当地设备提供了智能服务或训练有素的人工智能(AI)模型。但是,在模型传输和部署的过程中,存在安全问题,即由于未经许可,由于不可靠的传输环境和在本地设备上的非法滥用而导致的AI模型泄漏。尽管现有的作品研究了对AI模型的知识产权(IP)保护,但它们主要集中于基于水印和基于加密的方法,并存在以下问题:(i)基于水印的方法仅提供后来提供被动验证,而不是主动保护。 (ii)基于加密的方法的计算效率低,密钥存储的安全性较低。 (iii)如果没有能够避免非法滥用AI模型的能力,现有方法不是设备的。为了解决这些问题,我们提出了一个设备和密钥无键的硬件AI模型IP保护机制。首先,提出了一个基于PUF的秘密密钥生成和基于几何值转换的重量加密,提出了基于PUF的AI模型保护框架的物理无统治函数(PUF)和置入扩散加密模型保护框架。其次,我们设计了一个基于PUF的密钥生成协议,该协议采用基于延迟的Anderson PUF来生成派生的秘密密钥。此外,合并了卷积编码和卷积交织技术,以提高基于PUF的关键产生和重建的稳定性。第三,提出了一种基于置换且基于扩散的智能模型加密/解密方法来实现有效的IP保护,在这种情况下,混乱理论用于将基于PUF的秘密密钥转换为加密/解密密钥。最后,实验评估证明了拟议的智能模型IP保护机制的有效性。
Machine learning as a service (MLaaS) framework provides intelligent services or well-trained artificial intelligence (AI) models for local devices. However, in the process of model transmission and deployment, there are security issues, i.e. AI model leakage due to the unreliable transmission environments and illegal abuse at local devices without permission. Although existing works study the intellectual property (IP) protection of AI models, they mainly focus on the watermark-based and encryption-based methods and have the following problems: (i) The watermark-based methods only provide passive verification afterward rather than active protection. (ii) Encryption-based methods are low efficiency in computation and low security in key storage. (iii) The existing methods are not device-bind without the ability to avoid illegal abuse of AI models. To deal with these problems, we propose a device-bind and key-storageless hardware AI model IP protection mechanism. First, a physical unclonable function (PUF) and permute-diffusion encryption-based AI model protection framework is proposed, including the PUF-based secret key generation and the geometric-value transformation-based weights encryption. Second, we design a PUF-based key generation protocol, where delay-based Anderson PUF is adopted to generate the derive-bind secret key. Besides, convolutional coding and convolutional interleaving technologies are combined to improve the stability of PUF-based key generation and reconstruction. Third, a permute and diffusion-based intelligent model weights encryption/decryption method is proposed to achieve effective IP protection, where chaos theory is utilized to convert the PUF-based secret key to encryption/decryption keys. Finally, experimental evaluation demonstrates the effectiveness of the proposed intelligent model IP protection mechanism.