论文标题

可检索的玻色孔纠缠大门与一个嘈杂的ancilla

Error-detectable bosonic entangling gates with a noisy ancilla

论文作者

Tsunoda, Takahiro, Teoh, James D., Kalfus, William D., de Graaf, Stijn J., Chapman, Benjamin J., Curtis, Jacob C., Thakur, Neel, Girvin, Steven M., Schoelkopf, Robert J.

论文摘要

事实证明,玻感量子误差校正是一种成功的方法,用于扩展量子记忆的连贯性,但是要执行深度量子电路,需要在编码码头之间的高保真门。为此,我们为各种玻感编码提供了一个可检测到的双Quition门的家族。从基于玻色旋转操作员的“ bloch球”的新几何框架中,我们构造了$ zz_l(θ)$和$ \ text {eSWap}(θ)$ GATES $ GATES $ GATES $ GATES $ GATES $ GATES $ GATES $ GATES for Binomial,4-Legged Cat,Dual-Rail,Dual-Rail和其他几个Bosonic Codes。大门汉密尔顿(Gate Hamiltonian)对工程师的设计很容易,只需要两个玻色粒量子和一个可分散耦合到一个量子的Ancilla之间的可编程束缚。该哈密顿量可以在带有Ancilla Transmons和微波炉的电路硬件中实现。提出的理论框架是为电路QED开发的,但可以推广到任何可以有效产生这种哈密顿量的平台。至关重要的是,一个人还可以检测Ancilla中的一阶误差和大门期间的骨气柜。我们表明,这允许人们以$ 10^{ - 4} $的级别达到错误检测到的门保真度,并以当今的硬件级别,仅受二阶硬件错误的限制。

Bosonic quantum error correction has proven to be a successful approach for extending the coherence of quantum memories, but to execute deep quantum circuits, high-fidelity gates between encoded qubits are needed. To that end, we present a family of error-detectable two-qubit gates for a variety of bosonic encodings. From a new geometric framework based on a "Bloch sphere" of bosonic operators, we construct $ZZ_L(θ)$ and $\text{eSWAP}(θ)$ gates for the binomial, 4-legged cat, dual-rail and several other bosonic codes. The gate Hamiltonian is simple to engineer, requiring only a programmable beamsplitter between two bosonic qubits and an ancilla dispersively coupled to one qubit. This Hamiltonian can be realized in circuit QED hardware with ancilla transmons and microwave cavities. The proposed theoretical framework was developed for circuit QED but is generalizable to any platform that can effectively generate this Hamiltonian. Crucially, one can also detect first-order errors in the ancilla and the bosonic qubits during the gates. We show that this allows one to reach error-detected gate fidelities at the $10^{-4}$ level with today's hardware, limited only by second-order hardware errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源