论文标题
使用半监督学习的土地覆盖和土地利用检测
Land Cover and Land Use Detection using Semi-Supervised Learning
论文作者
论文摘要
半监督学习(SSL)在遥感领域取得了长足的进步。寻找大量用于SSL方法的标签数据集并不常见,并且手动标记数据集很昂贵且耗时。此外,与传统图像相比,准确识别遥感卫星图像更为复杂。类不平衡数据集是另一个普遍现象,对这些现象进行了训练的模型对多数类偏见。这成为SSL模型的低标准性能的关键问题。我们旨在解决标记未标记数据的问题,并由于数据集不平衡而解决模型偏差问题,同时实现了更好的准确性。为了实现这一目标,我们创建“人造”标签并训练模型以具有合理的准确性。我们通过使用分配对准技术重新采样来迭代地重新分配类。我们使用各种类不平衡的卫星图像数据集:EuroSat,UCM和WHU-RS19。在UCM平衡数据集上,我们的方法的表现分别优于先前的方法MSMATCH和FIXMATCH,分别为1.21%和0.6%。对于不平衡的EuroSat,我们的方法的表现分别优于MSMATCH和FIXMATCH,分别为1.08%和1%。我们的方法大大减少了对标记数据的需求,始终优于替代方法,并解决了由数据集中的类不平衡引起的模型偏差问题。
Semi-supervised learning (SSL) has made significant strides in the field of remote sensing. Finding a large number of labeled datasets for SSL methods is uncommon, and manually labeling datasets is expensive and time-consuming. Furthermore, accurately identifying remote sensing satellite images is more complicated than it is for conventional images. Class-imbalanced datasets are another prevalent phenomenon, and models trained on these become biased towards the majority classes. This becomes a critical issue with an SSL model's subpar performance. We aim to address the issue of labeling unlabeled data and also solve the model bias problem due to imbalanced datasets while achieving better accuracy. To accomplish this, we create "artificial" labels and train a model to have reasonable accuracy. We iteratively redistribute the classes through resampling using a distribution alignment technique. We use a variety of class imbalanced satellite image datasets: EuroSAT, UCM, and WHU-RS19. On UCM balanced dataset, our method outperforms previous methods MSMatch and FixMatch by 1.21% and 0.6%, respectively. For imbalanced EuroSAT, our method outperforms MSMatch and FixMatch by 1.08% and 1%, respectively. Our approach significantly lessens the requirement for labeled data, consistently outperforms alternative approaches, and resolves the issue of model bias caused by class imbalance in datasets.