论文标题

迈向与系统大小线性缩放的神经变性蒙特卡洛

Towards Neural Variational Monte Carlo That Scales Linearly with System Size

论文作者

Sharir, Or, Chan, Garnet Kin-Lic, Anandkumar, Anima

论文摘要

量子多体问题是科学中一些最具挑战性的问题,对于揭开某些异国情调的量子现象(例如高温超导体)而言是至关重要的。与代表量子状态的神经网络(NN)的组合以及变异蒙特卡洛(VMC)算法相结合,已被证明是解决此类问题的一种有前途的方法。但是,此方法的运行时间与模拟粒子的数量二次缩放,将实际上可用的NN限制为 - 在机器学习术语中 - 微小尺寸(<10m参数)。考虑到Extreme NN在 +1B参数刻度上带来的许多突破到其他域中,取消此约束可能会大大扩展我们可以在大小和复杂性的古典计算机上准确模拟的量子系统集。我们提出了一种称为载体定量神经量子状态(VQ-NQ)的NN架构,该结构利用矢量定量技术在VMC算法的局部能量计算中利用冗余 - 四次缩放的来源。在我们的初步实验中,我们证明了VQ-NQ在各种系统尺寸上重现2D海森贝格模型的基态的能力,同时报告了局部能量计算中触发器数量中大约$ {\ times} 10 $的大幅降低。

Quantum many-body problems are some of the most challenging problems in science and are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors. The combination of neural networks (NN) for representing quantum states, coupled with the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems. However, the run-time of this approach scales quadratically with the number of simulated particles, constraining the practically usable NN to - in machine learning terms - minuscule sizes (<10M parameters). Considering the many breakthroughs brought by extreme NN in the +1B parameters scale to other domains, lifting this constraint could significantly expand the set of quantum systems we can accurately simulate on classical computers, both in size and complexity. We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm - the source of the quadratic scaling. In our preliminary experiments, we demonstrate VQ-NQS ability to reproduce the ground state of the 2D Heisenberg model across various system sizes, while reporting a significant reduction of about ${\times}10$ in the number of FLOPs in the local-energy calculation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源