论文标题
学习有效的Quasiotic量子扰动器的解码器
Learning efficient decoders for quasi-chaotic quantum scramblers
论文作者
论文摘要
量子信息的争夺是随机和基准协议的根源,量子混乱的发作和黑洞物理学的重要特征。可以给出有关扰动器的完美知识[arxiv:1710.03363。]。我们证明,即使没有任何以前的扰乱者知识,也可以通过允许构建有效的解码器来检索炒扰的信息。值得注意的是,该解码器是经典的,因为它可以在经典计算机上作为Clifford操作员有效地表示。令人惊讶的是,经典解码器可以忠实地检索所有的信息,只要没有成熟的量子混乱,就无法在经典计算机上有效模拟的随机单一扰乱。该结果表明,人们可以以经典形式学习量子单位的显着特性,并为量子混乱的含义提供新的启示。此外,我们获得了有关$ t $ T $的Clifford电路的代数结构的结果,即包含t非克利福德门的Clifford电路,其门的复杂性和具有独立利益的可学习性。特别是,我们表明,可以将$ t $的Clifford电路$ u_t $分解为两个Clifford Circuits $ u_ {0},u^{\ prime} _0 $,将本地统一运算符$ u_t $,I.E.本地统一运算符$ u_t $包含$ t $ non-clifford门,最多可用于$ t $ Qubits。作为简单的推论,$ t $的Clifford电路的门复杂性$ u_t $是$ O(n^2+t^3)$,并且使用$ \ mathrm {poly}(poly}(n,2^t)$的有效过程断层扫描。
Scrambling of quantum information is an important feature at the root of randomization and benchmarking protocols, the onset of quantum chaos, and black-hole physics. Unscrambling this information is possible given perfect knowledge of the scrambler [arXiv:1710.03363.]. We show that one can retrieve the scrambled information even without any previous knowledge of the scrambler, by a learning algorithm that allows the building of an efficient decoder. Remarkably, the decoder is classical in the sense that it can be efficiently represented on a classical computer as a Clifford operator. It is striking that a classical decoder can retrieve with fidelity one all the information scrambled by a random unitary that cannot be efficiently simulated on a classical computer, as long as there is no full-fledged quantum chaos. This result shows that one can learn the salient properties of quantum unitaries in a classical form, and sheds a new light on the meaning of quantum chaos. Furthermore, we obtain results concerning the algebraic structure of $t$-doped Clifford circuits, i.e., Clifford circuits containing t non-Clifford gates, their gate complexity, and learnability that are of independent interest. In particular, we show that a $t$-doped Clifford circuit $U_t$ can be decomposed into two Clifford circuits $U_{0},U^{\prime}_0$ that sandwich a local unitary operator $u_t$, i.e., $U_t=U_{0} u_{t}U_{0}^{\prime}$. The local unitary operator $u_t$ contains $t$ non-Clifford gates and acts nontrivially on at most $t$ qubits. As simple corollaries, the gate complexity of the $t$-doped Clifford circuit $U_t$ is $O(n^2+t^3)$, and it admits a efficient process tomography using $\mathrm{poly}(n,2^t)$ resources.