论文标题

社会学分析的自我监管的超图表学习

Self-supervised Hypergraph Representation Learning for Sociological Analysis

论文作者

Sun, Xiangguo, Cheng, Hong, Liu, Bo, Li, Jia, Chen, Hongyang, Xu, Guandong, Yin, Hongzhi

论文摘要

现代社会学已深刻发现了许多令人信服的行为分析社会标准。不幸的是,其中许多太主观了,无法在在线社交网络中进行衡量和介绍。另一方面,数据挖掘技术可以更好地找到数据模式,但其中许多人留下了不自然的理解。在本文中,我们提出了一种基本方法,以支持数据挖掘技术和社会行为标准的进一步融合。我们的亮点是三倍:首先,我们提出了有效的HyperGraph意识和快速的线图构造框架。超图可以更深刻地表明个人及其环境之间的相互作用,因为HyperGraph(又称HypereDge)中的每个边缘都包含两个以上的节点,这非常适合描述社交环境。线图将每个社交环境视为一个超级节点,具有不同环境之间的潜在影响。通过这种方式,我们超越了传统的配对关系,并在各种社会学标准下探索了更丰富的模式。其次,我们提出了一个基于超图的新型神经网络,以学习从用户流向用户,环境,用户到用户以及环境到环境的社会影响力。可以通过无任务方法来学习神经网络,从而使我们的模型非常灵活,以支持各种数据挖掘任务和社会学分析;第三,我们提出定性和定量解决方案,以有效评估最常见的社会学标准,例如社会整合,社会对等,环境发展和社会两极分化。我们的广泛实验表明,我们的框架可以更好地支持在线用户行为和社会学分析的数据挖掘任务。

Modern sociology has profoundly uncovered many convincing social criteria for behavioural analysis. Unfortunately, many of them are too subjective to be measured and presented in online social networks. On the other hand, data mining techniques can better find data patterns but many of them leave behind unnatural understanding. In this paper, we propose a fundamental methodology to support the further fusion of data mining techniques and sociological behavioral criteria. Our highlights are three-fold: First, we propose an effective hypergraph awareness and a fast line graph construction framework. The hypergraph can more profoundly indicate the interactions between individuals and their environments because each edge in the hypergraph (a.k.a hyperedge) contains more than two nodes, which is perfect to describe social environments. A line graph treats each social environment as a super node with the underlying influence between different environments. In this way, we go beyond traditional pair-wise relations and explore richer patterns under various sociological criteria; Second, we propose a novel hypergraph-based neural network to learn social influence flowing from users to users, users to environments, environment to users, and environments to environments. The neural network can be learned via a task-free method, making our model very flexible to support various data mining tasks and sociological analysis; Third, we propose both qualitative and quantitive solutions to effectively evaluate the most common sociological criteria like social conformity, social equivalence, environmental evolving and social polarization. Our extensive experiments show that our framework can better support both data mining tasks for online user behaviours and sociological analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源