论文标题

无序的非释放动力学的平衡浓度和相对不稳定

Concentration of Equilibria and Relative Instability in Disordered Non-Relaxational Dynamics

论文作者

Kivimae, Pax

论文摘要

我们考虑了Cugliandolo等人引入的随机自主ods系统。 [22],它是球形p-spin模型的梯度流的非释放类似物。 Fyodorov [32]在高维限制中计算了该模型中预期均衡数量的渐近数,随后是对Garcia的预期稳定均衡数量的相似计算[38]。我们表明,对于$ p> 9 $,平衡的数量以及稳定的平衡数量集中在各自的平均值上,在放松案例中概括了Subag和Zeitouni [61,64]的最新结果。特别是,我们证实该模型从Ben Acrous,Fyodorov和Khoruzhenko的意义上经历了从相对不稳定性到绝对不稳定性的过渡[11]。

We consider a system of random autonomous ODEs introduced by Cugliandolo et al. [22], which serves as a non-relaxational analog of the gradient flow for the spherical p-spin model. The asymptotics for the expected number of equilibria in this model was recently computed by Fyodorov [32] in the high-dimensional limit, followed a similar computation for the expected number of stable equilibria by Garcia [38]. We show that for $p > 9$ the number of equilibria, as well as the number of stable equilibria, concentrate around their respective averages, generalizing recent results of Subag and Zeitouni [61, 64] in the relaxational case. In particular, we confirm that this model undergoes a transition from relative to absolute instability, in the sense of Ben Arous, Fyodorov, and Khoruzhenko [11].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源