论文标题

Zno/Tio $ _2 $ - 光子晶体板的室温拓扑激光激光的设计

Design of a room-temperature topological exciton-polariton laser in a ZnO/TiO$_2$-photonic crystal slab

论文作者

Septembre, I., Leblanc, C., Hermet, L., Nguyen, H. S., Letartre, X., Solnyshkov, D. D., Malpuech, G.

论文摘要

从理论上讲,我们提出了一种以传播拓扑激光模式获得室温2D拓扑激光激光的方案。该结构在光子晶体平板中使用引导模式。 ZnO层在室温下提供了稳定的强烈激子共振。它由Tio $ _2 $层被三角形晶格刺穿。 3D结构的激子 - 孔子模式是通过求解数值麦克斯韦的方程(包括激子响应)来计算的。设计的三角形晶格显示出横向电间隙。当一个子晶格之一消失时,三角晶格被证明是交错的蜂窝晶格的极限。它的拓扑可以以对称指标为特征。两个移动的三角形晶格之间的界面支持两个位于散装模式间隙中的反传播模式。界面状态类似于量子假蛋白厅界面状态。这些模式显示正交极化。可以使用偏振激发选择性地激发它们,并从后散射中受到良好保护。这些模式可以从室温下的激子 - 波利顿增益中受益,因为它们的激子分数足够大,并且在能量中的位置有利。这些繁殖模式的强烈定位使它们适合于界面上的非共振泵触发的托管拓扑激光。

We propose theoretically a scheme to get a room-temperature 2D topological exciton-polariton laser with propagating topological lasing modes. The structure uses guided modes in a photonic crystal slab. A ZnO layer provides strong excitonic resonances stable at room temperature. It is capped by a TiO$_2$ layer pierced by a triangular lattice. The exciton-polariton modes of the 3D structure are computed by solving numerically Maxwell's equations including the excitonic response. The designed triangular lattice shows a transverse electric gap. The triangular lattice is shown to be the limit of a staggered honeycomb lattice when one of the sub-lattices vanishes. Its topology can be characterized by symmetry indicators. The interface between two shifted triangular lattices supports two counter-propagating modes lying in the gap of the bulk modes. The interface states are analogous to quantum pseudospin Hall interface states. These modes show orthogonal polarizations. They can be selectively excited using polarized excitation and are well-protected from back-scattering. These modes can benefit from the exciton-polariton gain at room temperature because of their sufficiently large exciton fraction and favorable position in energy. The strong localization of these propagating modes makes them suitable to host topological lasing triggered by a non-resonant pump localized on the interface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源