论文标题

尖锐而刚性的等法不平等在公制尺寸空间中,具有非负RICCI曲率的空间

Sharp and rigid isoperimetric inequality in metric measure spaces with non-negative Ricci curvature

论文作者

Han, Bang-Xian

论文摘要

通过使用最佳运输理论,我们证明了涉及体积熵的无尺寸的等轴测不平等,在Lott-Sturm-andrm-villani的意义上,具有非负RICCI曲率的度量度量空间。我们表明,当且仅当该空间满足某个叶面特性时,当且仅当空间符合某个叶面特性时,就可以实现这种等法不平等。对于具有非负riemannian ricci曲率的度量度量空间,我们表明,当且仅当一个维一个维空间被拆分时,且仅当时是通过非平凡的可测量集来实现尖锐的脸颊常数。我们的等速度不平等和刚性定理在非平滑框架中证明,但即使在平滑环境中也是新的。特别是,我们的结果提供了对对数凹入措施的一些新理解。

By using optimal transport theory, we prove a sharp dimension-free isoperimetric inequality involving the volume entropy, in metric measure spaces with non-negative Ricci curvature in the sense of Lott--Sturm--Villani. We show that this isoperimetric inequality is attained by a non-trivial open set, if and only if the space satisfies a certain foliation property. For metric measure spaces with non-negative Riemannian Ricci curvature, we show that the sharp Cheeger constant is achieved by a non-trivial measurable set, if and only if a one-dimensional space is split off. Our isoperimetric inequality and the rigidity theorems are proved in non-smooth framework, but new even in the smooth setting. In particular, our results provide some new understanding of logarithmically concave measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源