论文标题
高分辨率图像生成的混合量子量子生成对抗网络
Hybrid Quantum-Classical Generative Adversarial Network for High Resolution Image Generation
论文作者
论文摘要
Quantum机器学习(QML)因其在分类和识别任务中的问题中超过经典的机器学习方法的潜力而受到了越来越多的关注。 QML方法的子类是量子生成对抗网络(QGAN),已被研究为在图像操纵和生成任务中广泛使用的经典gan的量子对应物。基于具有明显降尺度的图像,现有的QGAN工作仍然仅限于小规模的概念验证示例。在这里,我们集成了经典和量子技术,以提出一个新的混合量子古典gan框架。我们通过生成$ 28 $ 28 $像素灰度图像来证明其出色的学习能力,而无需降低维度或经典的预测或经典的预/后处理,以在多个标准的MNIST和时尚MNIST数据集中进行,从而获得了与经过三个数量级较小的培训生成器参数的经典框架相当的结果。为了进一步了解混合方法的工作,我们通过改变量子数,图像贴片的大小,发电机中的层,贴片的形状和先验分布的选择来系统地探索其参数空间的影响。我们的结果表明,增加量子发生器的大小通常可以提高网络的学习能力。开发的框架为QGAN的未来设计提供了基础,该QGAN的最佳参数集为复杂的图像生成任务量身定制。
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in problems pertaining classification and identification tasks. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant downscaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with three orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.