论文标题

通过六组分极化分析进行有效的波型指纹和过滤

Efficient wave type fingerprinting and filtering by six-component polarization analysis

论文作者

Sollberger, David, Bradley, Nicholas, Edme, Pascal, Robertsson, Johan O. A.

论文摘要

我们提出了一种技术,可以自动对地震阶段的波动类型进行分类,该技术在地球表面上记录在一个六组分记录站(测量转换和旋转地面运动的三个成分)上。我们利用了每种波类型在传感器的六组分运动中留下独特的“指纹”的事实。可以通过对数据协方差矩阵进行特征分析来提取这种指纹,类似于常规的三成分极化分析。为了将波动类型分配给从数据中提取的指纹分配,我们将其与分析得出的六组分极化模型进行比较,该模型对纯状平面波到达有效。为了有效的分类,我们利用了使用数据无关的,分析衍生的六组分极化模型对培训的支持向量机的监督机学习方法。这可以使地震阶段以完全自动化的方式进行快速分类,即使对于大型数据量,例如在土地震荡探索或环境噪声地震学中遇到的大量数据。一旦已知波形,就可以直接从六组分极化状态中提取其他波参数(速度,方向性和椭圆度),而无需诉诸昂贵的优化算法。 我们说明了方法在各种真实和合成数据示例中的好处,例如自动化相位拾取,土地震荡探索中的别名倒数抑制作用以及从环境噪声的单个站点记录中快速接近实时地进行表面波分散曲线的实时提取。此外,我们认为,为了成功地采用从旋转和翻译运动的组合测量中提取相速度的通用技术,必须采用波动类型分类的初始步骤。

We present a technique to automatically classify the wave type of seismic phases that are recorded on a single six-component recording station (measuring both three components of translational and rotational ground motion) at the earth's surface. We make use of the fact that each wave type leaves a unique 'fingerprint' in the six-component motion of the sensor. This fingerprint can be extracted by performing an eigenanalysis of the data covariance matrix, similar to conventional three-component polarization analysis. To assign a wave type to the fingerprint extracted from the data, we compare it to analytically derived six-component polarization models that are valid for pure-state plane wave arrivals. For efficient classification, we make use of the supervised machine learning method of support vector machines that is trained using data-independent, analytically-derived six-component polarization models. This enables the rapid classification of seismic phases in a fully automated fashion, even for large data volumes, such as encountered in land-seismic exploration or ambient noise seismology. Once the wave-type is known, additional wave parameters (velocity, directionality, and ellipticity) can be directly extracted from the six-component polarization states without the need to resort to expensive optimization algorithms. We illustrate the benefits of our approach on various real and synthetic data examples for applications such as automated phase picking, aliased ground-roll suppression in land-seismic exploration, and the rapid close-to real time extraction of surface wave dispersion curves from single-station recordings of ambient noise. Additionally, we argue that an initial step of wave type classification is necessary in order to successfully apply the common technique of extracting phase velocities from combined measurements of rotational and translational motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源