论文标题
通过非绝热拓扑库珀对泵送的分数跨导率
Fractional transconductance via non-adiabatic topological Cooper pair pumping
论文作者
论文摘要
量子物理学中的许多健壮的物理现象都是基于由于量子状态的几何特性而引起的拓扑不变性。主要示例是整数和分数量子霍尔效应,这些效应表明了量化的霍尔电导,与单个粒子和密切相关的多体极限相关的拓扑相关。有趣的是,整数效应的拓扑结构可以在超导多端系统中实现,但是缺乏针对更复杂的分数对应物的建议。在这项工作中,我们从理论上说明了如何在约瑟夫森连接的工程链中实现分数量化的跨导率。至关重要的是,类似于HALL系统中电导地位的稳定,由于非绝热Landau-Zener转变,我们获得了稳定的跨导静态。我们此外表明,分数高原对障碍是鲁棒的,并研究了观察这些影响的最佳操作制度。我们的提议为约瑟夫森交界系统中异国多体外平衡状态的量子模拟铺平了道路。
Many robust physical phenomena in quantum physics are based on topological invariants arising due to intriguing geometrical properties of quantum states. Prime examples are the integer and fractional quantum Hall effects that demonstrate quantized Hall conductances, associated with topology both in the single particle and the strongly correlated many-body limit. Interestingly, the topology of the integer effect can be realized in superconducting multiterminal systems, but a proposal for the more complex fractional counterpart is lacking. In this work, we theoretically demonstrate how to achieve fractional quantized transconductance in an engineered chain of Josephson junctions. Crucially, similar to the stabilization of the conductance plateaus in Hall systems by disorder, we obtain stable transconductance plateaus as a result of non-adiabatic Landau-Zener transitions. We furthermore show that the fractional plateaus are robust to disorder and study the optimal operation regime to observe these effects. Our proposal paves the way for quantum simulation of exotic many-body out-of-equilibrium states in Josephson junction systems.