论文标题

NDDO-Descendant半经验方法的改进的参数化过程

An Improved Parameterization Procedure for NDDO-Descendant Semiempirical Methods

论文作者

Ong, Adrian Wee Wen, Cao, Steve Yueran, Kwek, Leong Chuan

论文摘要

基于MNDO的量子化学中基于MNDO的半经验方法已在大型和复杂系统的建模中广泛应用。提出了一种分子特性的第一和第二个衍生物对基于MNDO的NDDO-DESCENDANT模型中半经验参数的分析和第二个衍生物的方法,并将结果参数Hessian与当前用于PMX参数化的近似值进行了比较。作为概念的证明,使用1206分子用于参考证据,使用1206分子将MNDO的确切参数Hessian用于对元素C,H,N,O和F的有限重新聚集。

MNDO-based semiempirical methods in quantum chemistry have found widespread application in the modelling of large and complex systems. A method for the analytic evaluation of first and second derivatives of molecular properties against semiempirical parameters in MNDO-based NDDO-descendant models is presented, and the resultant parameter Hessian is compared against the approximant currently used in parameterization for the PMx models. As a proof of concept, the exact parameter Hessian is employed in a limited reparameterization of MNDO for the elements C, H, N, O and F using 1206 molecules for reference data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源