论文标题

肩var的频谱作为固定点方案

Spectrum of equivariant cohomology as a fixed point scheme

论文作者

Hausel, Tamás, Rychlewicz, Kamil

论文摘要

当$ \ Mathrm g $中的所有常规独立元素ACT ACT带有有限的固定点时,复杂的还原组$ \ MATHRM G $在平滑的投射品种$ x $上都是常规的。然后,$ x $的复杂$ \ mathrm g $ - equivariant共同体戒指与某个常规固定点方案的坐标环是同构。例子包括部分旗品品种,光滑的舒伯特品种和Bott-Samelson品种。我们还表明,固定点方案的更通用版本允许对GKM空间(例如折磨品种)进行概括。

An action of a complex reductive group $\mathrm G$ on a smooth projective variety $X$ is regular when all regular unipotent elements in $\mathrm G$ act with finitely many fixed points. Then the complex $\mathrm G$-equivariant cohomology ring of $X$ is isomorphic to the coordinate ring of a certain regular fixed point scheme. Examples include partial flag varieties, smooth Schubert varieties and Bott-Samelson varieties. We also show that a more general version of the fixed point scheme allows a generalisation to GKM spaces, such as toric varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源