论文标题
巨大的theta升降机
Massive Theta Lifts
论文作者
论文摘要
我们将庞康卡雷(Poincare)系列用于大量的maass-jacobi形式来定义“巨大的theta升力”,并将其应用于恒定函数和模块化j-函数的示例,并用Siegel-Narain theta函数作为集成内核。这些theta积分是已知的单循环阈值校正的变形。我们的巨大theta提升呈指数级别,因此一些兰金·塞尔伯格(Rankin-Selberg)积分是有限的,而没有Zagier重归于。
We use Poincare series for massive Maass-Jacobi forms to define a "massive theta lift", and apply it to the examples of the constant function and the modular invariant j-function, with the Siegel-Narain theta function as integration kernel. These theta integrals are deformations of known one-loop string threshold corrections. Our massive theta lifts fall off exponentially, so some Rankin-Selberg integrals are finite without Zagier renormalization.