论文标题
相反的散落腔光学机械依赖奇偶元的单向和手性光子传递
Parity-dependent unidirectional and chiral photon transfer in reversed-dissipation cavity optomechanics
论文作者
论文摘要
非偏源元素(例如隔离器和循环器)在经典和量子信息处理中起着重要作用。最近,在腔光光学系统中已实验证明了强烈的非肾上腺素效应。在这些方法中,非逆性光子传输的带宽受到机械谐振器线宽的限制,在大多数机电或光机电设备中,它可以说比空腔模式的线宽小得多。在这项工作中,我们在\ emph {反向流失}方案中演示了宽带非临界光子传输,其中,具有较大衰减速率的机械模式可以绝热地消除,同时介导抗 - $ \ Mathcal {pt} $ - 对称性耗散耦合,与两种相位因子的对称性耗散耦合。调整相对阶段可以观察\ emph {周期性} riemann-sheet结构,具有分布式特殊点(EPS)。在EPS上,破坏性的量子干扰会破坏$ \ Mathcal {t} $ - 和$ \ Mathcal {p} $ - 反转对称性,从而产生了单向和手性光子传输。在相反的散落方案中,非转录带宽不再受到机械模式线宽的限制,而是将其改进到空腔共振的线宽。此外,我们发现单向和手性能量转移的方向可以通过更改EPS的\ emph {parity}来逆转。将非热耦合扩展到三腔模型,损坏的抗 - $ \ Mathcal {pt} $ - 对称性使我们能够观察高阶EPS,在该EPS上证明了依赖奇偶校验的手性循环器。驾驶相控制的周期性黎曼板可以观察依赖奇偶校验的单向和手性能量转移,因此为构建非重点阵列并实现拓扑结构提供了有用的细胞,例如隔离器,循环器或放大器。
Nonreciprocal elements, such as isolators and circulators, play an important role in classical and quantum information processing. Recently, strong nonreciprocal effects have been experimentally demonstrated in cavity optomechanical systems. In these approaches, the bandwidth of the nonreciprocal photon transmission is limited by the mechanical resonator linewidth, which is arguably much smaller than the linewidths of the cavity modes in most electromechanical or optomechanical devices. In this work, we demonstrate broadband nonreciprocal photon transmission in the \emph{reversed-dissipation} regime, where the mechanical mode with a large decay rate can be adiabatically eliminated while mediating anti-$\mathcal{PT}$-symmetric dissipative coupling with two kinds of phase factors. Adjusting the relative phases allows the observation of \emph{periodic} Riemann-sheet structures with distributed exceptional points (Eps). At the Eps, destructive quantum interference breaks both the $\mathcal{T}$- and $\mathcal{P}$-inversion symmetry, resulting in unidirectional and chiral photon transmissions. In the reversed-dissipation regime, the nonreciprocal bandwidth is no longer limited by the mechanical mode linewidth but is improved to the linewidth of the cavity resonance. Furthermore, we find that the direction of the unidirectional and chiral energy transfer could be reversed by changing the \emph{parity} of the Eps. Extending non-Hermitian couplings to a three-cavity model, the broken anti-$\mathcal{PT}$-symmetry allows us to observe high-order Eps, at which a parity-dependent chiral circulator is demonstrated. The driving-phase controlled periodical Riemann sheets allow observation of the parity-dependent unidirectional and chiral energy transfer and thus provide a useful cell for building up nonreciprocal array and realizing topological, e.g., isolators, circulators, or amplifiers.