论文标题

在Grassmann流形的联合PCA中,用于物联网网络中的异常检测

Federated PCA on Grassmann Manifold for Anomaly Detection in IoT Networks

论文作者

Nguyen, Tung-Anh, He, Jiayu, Le, Long Tan, Bao, Wei, Tran, Nguyen H.

论文摘要

在物联网时代(IoT)时代,由于大多数IoT设备的固有安全性漏洞,网络范围内的异常检测是监视IoT网络的关键部分。已提出主成分分析(PCA)将网络运输分离为两个不相交的子空间,这些子空间对应于正常和恶意行为以进行异常检测。但是,隐私涉及设备计算资源的限制和局限性损害了PCA的实际有效性。我们提出了一个基于PCA的联合Grassmannian优化框架,该框架协调IoT设备以汇总正常网络行为的联合曲线以进行异常检测。首先,我们介绍了一个保护隐私的联合PCA框架,以同时捕获各种物联网设备流量的配置文件。然后,我们研究了基于乘数的乘数梯度学习的交替方向方法,以确保快速训练和使用有限的计算资源检测潜伏期。 NSL-KDD数据集的经验结果表明,我们的方法的表现优于基线方法。最后,我们表明,Grassmann歧管算法高度适用于IoT异常检测,这可以大大减少系统的分析时间。据我们所知,这是第一个用于符合IoT网络要求的异常检测的联合PCA算法。

In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源