论文标题

带有聚合机制的大型原始情绪数据集

Large Raw Emotional Dataset with Aggregation Mechanism

论文作者

Kondratenko, Vladimir, Sokolov, Artem, Karpov, Nikolay, Kutuzov, Oleg, Savushkin, Nikita, Minkin, Fyodor

论文摘要

我们提供了一个新的数据集,用于语音情感识别(SER)任务,称为Dusha。该语料库包含大约350个小时的数据,其中有30万张录音,并带有俄罗斯语音及其成绩单。因此,这是当今SER任务的最大开放双模式数据收集。它使用众包平台进行注释,其中包括两个子集:行为和现实生活。与由音频播客组成的不平衡的现实生活部分相比,ACTED子集的班级分布更平衡。因此,第一个适用于模型预训练,第二个是用于微调目的,模型认可和验证的详细说明。本文介绍了使用基线模型进行预处理的例程,注释和实验,以证明可以使用DUSHA数据集获得的一些实际指标。

We present a new data set for speech emotion recognition (SER) tasks called Dusha. The corpus contains approximately 350 hours of data, more than 300 000 audio recordings with Russian speech and their transcripts. Therefore it is the biggest open bi-modal data collection for SER task nowadays. It is annotated using a crowd-sourcing platform and includes two subsets: acted and real-life. Acted subset has a more balanced class distribution than the unbalanced real-life part consisting of audio podcasts. So the first one is suitable for model pre-training, and the second is elaborated for fine-tuning purposes, model approbation, and validation. This paper describes pre-processing routine, annotation, and experiment with a baseline model to demonstrate some actual metrics which could be obtained with the Dusha data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源