论文标题
部分可观测时空混沌系统的无模型预测
On torsion freeness for the decomposable Orlik-Solomon algebra
论文作者
论文摘要
我们证明了可分解的Orlik-Solomon代数的扭转,地面套装$ [n] $。在一系列可溶解的\&不可透明的复杂的超平面布置,在一定程度上,这种组合定义的对象在某种程度上与布置的交叉晶格有关,会影响第一个不变的安排互补互补的高均质较高同质拷贝组。
We prove the torsion freeness of the decomposable Orlik--Solomon algebra of a simple matroid on ground set $[n]$. In the class of hypersolvable \& non-supersolvable complex hyperplane arrangements, the torsion freeness, in a certain degree, of this combinatorially defined object, associated to the intersection lattice of the arrangement, impacts on the first non-vanishing higher homotopy group of the complement of the arrangement.