论文标题

高腰围和无h的图表中的匹配切割

Matching Cuts in Graphs of High Girth and H-Free Graphs

论文作者

Feghali, Carl, Lucke, Felicia, Paulusma, Daniel, Ries, Bernard

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The (Perfect) Matching Cut problem is to decide if a connected graph has a (perfect) matching that is also an edge cut. The Disconnected Perfect Matching problem is to decide if a connected graph has a perfect matching that contains a matching cut. Both Matching Cut and Disconnected Perfect Matching are NP-complete for planar graphs of girth 5, whereas Perfect Matching Cut is known to be NP-complete even for subcubic bipartite graphs of arbitrarily large fixed girth. We prove that Matching Cut and Disconnected Perfect Matching are also NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Our result for Matching Cut resolves a 20-year old open problem. We also show that the more general problem $d$-Cut, for every fixed $d \geq 1$, is NP-complete for bipartite graphs of arbitrarily large fixed girth and bounded maximum degree. Furthermore, we show that Matching Cut, Perfect Matching Cut and Disconnected Perfect Matching are NP-complete for $H$-free graphs whenever $H$ contains a connected component with two vertices of degree at least 3. Afterwards, we update the state-of-the-art summaries for $H$-free graphs and compare them with each other, and with a known and full classification of the Maximum Matching Cut problem, which is to determine a largest matching cut of a graph $G$. Finally, by combining existing results, we obtain a complete complexity classification of Perfect Matching Cut for $H$-subgraph-free graphs where $H$ is any finite set of graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源