论文标题

在贝叶斯推理的背景下,超差异敏感性分析应用于冰盖问题

Hyper-differential sensitivity analysis in the context of Bayesian inference applied to ice-sheet problems

论文作者

Reese, William, Hart, Joseph, Waanders, Bart van Bloemen, Perego, Mauro, Jakeman, John, Saibaba, Arvind

论文摘要

受部分微分方程(PDE)限制的逆问题在模型开发和校准中起关键作用。在许多应用程序中,模型中有多个不确定的参数,必须估算。尽管贝叶斯公式对于此类问题具有吸引力,但计算成本和高维度通常会禁止对参数不确定性进行彻底探索。一种常见的方法是通过固定一些参数(我们称为辅助参数)来降低维度,以最佳估计和使用PDE受限优化的技术,从而近似贝叶斯后分布的属性。例如,可以计算最大后验概率(MAP)和后协方差的拉普拉斯近似。在本文中,我们建议使用超差异敏感性分析(HDSA)评估地图对辅助参数变化的敏感性。我们将HDSA解释为后验分布中的相关性。我们提出的框架是在格陵兰冰盖基岩地形的倒置上,其基础摩擦系数和气候强迫引起的不确定性(冰累积速率)引起了不确定性。

Inverse problems constrained by partial differential equations (PDEs) play a critical role in model development and calibration. In many applications, there are multiple uncertain parameters in a model which must be estimated. Although the Bayesian formulation is attractive for such problems, computational cost and high dimensionality frequently prohibit a thorough exploration of the parametric uncertainty. A common approach is to reduce the dimension by fixing some parameters (which we will call auxiliary parameters) to a best estimate and use techniques from PDE-constrained optimization to approximate properties of the Bayesian posterior distribution. For instance, the maximum a posteriori probability (MAP) and the Laplace approximation of the posterior covariance can be computed. In this article, we propose using hyper-differential sensitivity analysis (HDSA) to assess the sensitivity of the MAP point to changes in the auxiliary parameters. We establish an interpretation of HDSA as correlations in the posterior distribution. Our proposed framework is demonstrated on the inversion of bedrock topography for the Greenland ice sheet with uncertainties arising from the basal friction coefficient and climate forcing (ice accumulation rate)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源