论文标题

在有限交换的本地戒指上警告数字

Waring numbers over finite commutative local rings

论文作者

Podestá, Ricardo A., Videla, Denis E.

论文摘要

在本文中,我们研究$ g_r(k)$ for $(r,\ frak m)$ g_r(k)$ $ a \ kathbb {n} $带有$(k,| r |)= 1 $的有限交换本地戒指。我们首先将警告号$ g_r(k)$与cayley图的直径相关联$ g_r(k)= cay(r,u_r(k))$和$ w_r(k)= cay(r,s_r(k))$ with $ u_r(k)$ u_r(k) x \ in r^\ times \} $,区分图形指向或无方向性的情况。我们表明,在这两种情况下(指示或无向),可以通过炸毁$ g _ {\ Mathbb {f} _q} _q}(k)$ a数字$ | \ frak {m frak {m rak {m} | $的$ g _ { $ r/\ frak m $。然后,通过使用上述爆炸,我们将在本地环$ r $上缩小WARING NUMBER $ G_R(K)$的研究,以计算有限的剩余场上$ r/\ frak m \ simeq \ simeq \ simeq \ simeq \ mathbb {f} f} _q $ g(k,q)$。通过这种方式,使用有限字段的尾声的已知结果,我们获得了几个明确的结果,即具有有限交换的本地环,并获得了具有身份的有限的本地环。

In this paper we study Waring numbers $g_R(k)$ for $(R,\frak m)$ a finite commutative local ring with identity and $k \in \mathbb{N}$ with $(k,|R|)=1$. We first relate the Waring number $g_R(k)$ with the diameter of the Cayley graphs $G_R(k)=Cay(R,U_R(k))$ and $W_R(k)=Cay(R,S_R(k))$ with $U_R(k) = \{ x^k : x\in R^*\}$ and $S_R(k)=\{x^k : x\in R^\times\}$, distinguishing the cases where the graphs are directed or undirected. We show that in both cases (directed or undirected), the graph $G_R(k)$ can be obtained by blowing-up the vertices of $G_{\mathbb{F}_q}(k)$ a number $|\frak{m}|$ of times, with independence sets the cosets of $\frak{m}$, where $q$ is the size of the residue field $R/\frak m$. Then, by using the above blowing-up, we reduce the study of the Waring number $g_R(k)$ over the local ring $R$ to the computation of the Waring number $g(k,q)$ over the finite residue field $R/\frak m \simeq \mathbb{F}_q$. In this way, using known results for Waring numbers over finite fields, we obtain several explicit results for Waring numbers over finite commutative local rings with identity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源