论文标题

基于后方差的错误量化成像中的反问题

Posterior-Variance-Based Error Quantification for Inverse Problems in Imaging

论文作者

Narnhofer, Dominik, Habring, Andreas, Holler, Martin, Pock, Thomas

论文摘要

在这项工作中,引入了一种用于在贝叶斯正规化问题中获得像素误差界限的方法。该提出的方法采用后差异的估计以及从共形预测中的技术以及为了获得误差范围的覆盖范围保证,而无需对基础数据分布做出任何假设。它通常适用于贝叶斯正规化方法,例如,与先验的具体选择。此外,如果只有从后部进行近似采样,也可以获得覆盖范围的保证。特别是这样,提出的框架能够以黑盒方式合并任何博学的先验。保证的覆盖范围没有对基础分布的假设,只能实现,因为误差范围的大小通常是未知的。然而,本文中提出的多种正则化方法的实验证实,实际上,获得的误差范围相当紧。为了实现数值实验,在这项工作中介绍了一种新型的原始二元双链二维算法,用于从非平滑分布中采样。

In this work, a method for obtaining pixel-wise error bounds in Bayesian regularization of inverse imaging problems is introduced. The proposed method employs estimates of the posterior variance together with techniques from conformal prediction in order to obtain coverage guarantees for the error bounds, without making any assumption on the underlying data distribution. It is generally applicable to Bayesian regularization approaches, independent, e.g., of the concrete choice of the prior. Furthermore, the coverage guarantees can also be obtained in case only approximate sampling from the posterior is possible. With this in particular, the proposed framework is able to incorporate any learned prior in a black-box manner. Guaranteed coverage without assumptions on the underlying distributions is only achievable since the magnitude of the error bounds is, in general, unknown in advance. Nevertheless, experiments with multiple regularization approaches presented in the paper confirm that in practice, the obtained error bounds are rather tight. For realizing the numerical experiments, also a novel primal-dual Langevin algorithm for sampling from non-smooth distributions is introduced in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源