论文标题

稳定的蒸馏和高维假设检验

Stable Distillation and High-Dimensional Hypothesis Testing

论文作者

Christ, Ryan, Hall, Ira, Steinsaltz, David

论文摘要

尽管假设正交参数为高维假设检验开发了强大的方法,但当前的方法难以推广到更常见的非正交病例。我们提出了稳定的蒸馏(SD),这是一个简单的范式,用于迭代地从观察到的数据中迭代提取独立的信息,假设使用参数模型。当应用于大型回归模型的假设测试时,SD正交通过明智地将噪声引入观察到的结果向量,从而使非正交预测因子的效果估计值,从而在预测指标之间产生相互独立的P值。通用回归和基因测试模拟表明,SD为非正交设计提供了可扩展的方法,该方法超过或匹配现有方法与稀疏替代方案的功能。虽然我们仅介绍在普通最小二乘和逻辑回归中假设测试的明确SD算法,但我们为得出和改善SD程序的功能提供了一般指导。

While powerful methods have been developed for high-dimensional hypothesis testing assuming orthogonal parameters, current approaches struggle to generalize to the more common non-orthogonal case. We propose Stable Distillation (SD), a simple paradigm for iteratively extracting independent pieces of information from observed data, assuming a parametric model. When applied to hypothesis testing for large regression models, SD orthogonalizes the effect estimates of non-orthogonal predictors by judiciously introducing noise into the observed outcomes vector, yielding mutually independent p-values across predictors. Generic regression and gene-testing simulations show that SD yields a scalable approach for non-orthogonal designs that exceeds or matches the power of existing methods against sparse alternatives. While we only present explicit SD algorithms for hypothesis testing in ordinary least squares and logistic regression, we provide general guidance for deriving and improving the power of SD procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源