论文标题

熵和动力学之间的普遍关系

Universal Relation between Entropy and Kinetics

论文作者

Sorkin, Benjamin, Diamant, Haim, Ariel, Gil

论文摘要

与热力学和动力学特性有关,是一个概念上的挑战,具有许多实际的好处。在这里,基于第一原理,我们得出了与粒子构型的熵和动态传播器有关的严格不平等。它是通用的,适用于远离热平衡的稳态。将一般关系应用于扩散动力学会产生熵与(正常或异常)扩散系数之间的关系。该关系可用于从计算出的稳态熵或相反,以基于测得的扩散系数估算熵的延迟扩散系数的有用边界。我们通过几个示例证明了关系的有效性和实用性,并讨论了其广泛的应用范围,特别是对于远离均衡的系统。

Relating thermodynamic and kinetic properties is a conceptual challenge with many practical benefits. Here, based on first principles, we derive a rigorous inequality relating the entropy and the dynamic propagator of particle configurations. It is universal and applicable to steady states arbitrarily far from thermal equilibrium. Applying the general relation to diffusive dynamics yields a relation between the entropy and the (normal or anomalous) diffusion coefficient. The relation can be used to obtain useful bounds for the late-time diffusion coefficient from the calculated steady-state entropy or, conversely, to estimate the entropy based on measured diffusion coefficients. We demonstrate the validity and usefulness of the relation through several examples and discuss its broad range of applications, in particular, for systems far from equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源