论文标题

D维超临界分支随机步行范围的较大偏差概率

Large deviation probabilities for the range of a d-dimensional supercritical branching random walk

论文作者

Zhang, Shuxiong

论文摘要

令$ \ {z_n \} _ {n \ geq 0} $为$ d $ - 维度超临界分支随机步行从原点开始。为位于$ s \ subset \ mathbb {r}^d $ in Time $ n $中的粒子数字编写$ z_n(s)$。用$ r_n:= \ inf \ {ρ:z_i(\ {| x | x | \ geqρ\})= 0,\ forall〜0 \ 0 \ leq i \ leq n \} $ $ \ {z_n \}在这项工作中,我们表明,在某些温和条件下,$ r_n/n $的概率收敛于某些正常数$ x^*$,为$ n \ to \ infty $。此外,我们研究了其相应的下偏差概率和相应的上部偏差概率,即$$ \ mathbb {p}(r_n \ leq xn)〜\ text {for} 〜x \ in(0,x^*); x \ in(x^*,\ infty)$$ as $ n \ to \ infty $。作为副产品,我们确认了Engländer\ Cite {Englander04}的猜想。

Let $\{Z_n\}_{n\geq 0 }$ be a $d$-dimensional supercritical branching random walk started from the origin. Write $Z_n(S)$ for the number of particles located in a set $S\subset\mathbb{R}^d$ at time $n$. Denote by $R_n:=\inf\{ρ:Z_i(\{|x|\geq ρ\})=0,\forall~0\leq i\leq n\}$ the range of $\{Z_n\}_{n\geq 0 }$ before time $n$. In this work, we show that under some mild conditions $R_n/n$ converges in probability to some positive constant $x^*$ as $n\to\infty$. Furthermore, we study its corresponding lower and upper deviation probabilities, i.e. the decay rates of $$ \mathbb{P}(R_n\leq xn)~\text{for}~x\in(0,x^*);~\mathbb{P}(R_n\geq xn) ~\text{for}~ x\in(x^*,\infty)$$ as $n\to\infty$. As a by-product, we confirm a conjecture of Engländer \cite{Englander04}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源