论文标题
非最小的希格斯通货膨胀和宇宙学初始条件
Nonminimal Higgs Inflation and Initial Conditions in Cosmology
论文作者
论文摘要
我们讨论扰动量子重力在非常早期的量子宇宙和量子宇宙学理论中的应用。理论形式主义对物质的量子作用和对应关系与现代精确宇宙学的观察状态的一致性施加了严格的界限,并与高能量粒子现象学建立了牢固的联系。在这种推理方面,我们研究了宇宙波函数的单循环近似的各个方面,回顾了Higgs通胀模型,将标准模型的Electroweak扇区的物理学与可观察到的宇宙微波背景的特征相结合,并最终考虑通货膨胀环球的量子初始条件问题。我们以微型典型密度矩阵的形式制定宇宙学量子状态,这是Wheeler-Dewitt方程的特征态的通用均衡。我们证明了消除不可剥夺的红外灾难,即对宇宙的无量子状态消失的宇宙常数,并以特殊的Garland型宇宙学Instanton的形式得出了通货膨胀的初始条件 - 量子重力路径积分的鞍点。该设置应用于宇宙的宇宙学模型,该模型具有许多形式上不变的较高自旋场的隐藏扇区,建议解决普朗克与通货膨胀能量尺度之间的层次结构问题的解决方案,因此可以接受扰动半经典膨胀方法的适用性。
We discuss applications of perturbative quantum gravity in the theory of very early quantum Universe and quantum cosmology. Consistency of the theoretical formalism for quantum effects of matter and correspondence with observational status of modern precision cosmology impose stringent bounds on and establish strong links with high energy particle phenomenology. Within this line of reasoning we study various aspects of one-loop approximation for the cosmological wave function, review Higgs inflation model intertwining the physics of electroweak sector of the Standard Model with the characteristics of the observable cosmic microwave background and, finally, consider the problem of quantum initial conditions for inflationary Universe. We formulate a cosmological quantum state in the form of the microcanonical density matrix -- a universal equipartition of eigenstates of the Wheeler-DeWitt equations. We demonstrate elimination of the inalienable infrared catastrophe of vanishing cosmological constant for the no-boundary quantum state of the Universe and derive initial conditions for inflation in the form of a special garland-type cosmological instanton -- the saddle point of quantum gravity path integral. Applied to the cosmological model of the Universe with a hidden sector of numerous conformally invariant higher spin fields, this setup suggests a solution to the problem of hierarchy between the Planck and the inflation energy scales and, thus, admits applicability of perturbative semiclassical expansion methods.