论文标题
α-Quartz的电子束增强固态机械非晶:通过局部过量电子作为移动阴离子来降低变形屏障
E-beam-enhanced solid-state mechanical amorphization of alpha-quartz: Reducing deformation barrier via localized excess electrons as mobile anions
论文作者
论文摘要
在静水压力下,α-Quartz经历了固态机械非晶化,其中Sio4四面体的互穿发生,并且物质失去了结晶度。这种相变的需要高静水压力为14 GPa,因为由SI-O键的离子性质产生的排斥力阻止了原子构型的严重失真。在本文中,我们通过实验和计算证明了电子束照射会改变α-Quartz中原子间键的性质,并增强了纳米级的固态机械非晶化的性质。具体而言,在原位单轴压缩期间,在电子束照射期间压缩的α-Quartz微柱中发生的较大的永久性变形比没有E梁照射的降低。微观结构分析表明,在电子束辐照下的大型永久变形源自α-Quartz的机械非晶化和随后的非晶区域的粘膜塑性变形。此外,原子尺度的模拟表明,通过电子束照射引入的离域过量电子移动到高度扭曲的原子构型并减轻了排斥力,从而降低了固态机械性无形化的障碍。这些发现加深了我们对电子 - 物质相互作用的理解,可以扩展到纳米和显微镜的新玻璃形成和加工技术。
Under hydrostatic pressure, alpha-quartz undergoes solid-state mechanical amorphization wherein the interpenetration of SiO4 tetrahedra occurs and the material loses crystallinity. This phase transformation requires a high hydrostatic pressure of 14 GPa because the repulsive forces resulting from the ionic nature of the Si-O bonds prevent the severe distortion of the atomic configuration. Herein, we experimentally and computationally demonstrate that e-beam irradiation changes the nature of the interatomic bonds in alpha-quartz and enhances the solid-state mechanical amorphization at nanoscale. Specifically, during in situ uniaxial compression, a larger permanent deformation occurs in alpha-quartz micropillars compressed during e-beam irradiation than in those without e-beam irradiation. Microstructural analysis reveals that the large permanent deformation under e-beam irradiation originates from the enhanced mechanical amorphization of alpha-quartz and the subsequent viscoplastic deformation of the amorphized region. Further, atomic-scale simulations suggest that the delocalized excess electrons introduced by e-beam irradiation move to highly distorted atomic configurations and alleviate the repulsive force, thus reducing the barrier to the solid-state mechanical amorphization. These findings deepen our understanding of electron-matter interactions and can be extended to new glass forming and processing technologies at nano- and microscale.